CMOS inverter

channel
width
 length

AMOS
(1)

$$
V_{G S}<V_{\substack{T_{n} \\ \text { threshold } \\ \text { voltage of NMOS }}} \text { OFF }
$$

2) $V_{G S}>V_{T_{n}} \quad V_{D S}<V_{G S}-V_{T_{n}}$

Ohmic region

$$
\begin{aligned}
& I_{D}=K_{n}[\underbrace{\left(V_{G S}-V_{T n}\right)}_{G A+E} V_{D S}-\frac{V_{D S}{ }^{2}}{2}] \\
& \rightarrow \underline{w} \mu_{n} C_{0 x}=\frac{w}{L} \mu_{n} \frac{\varepsilon_{0} \varepsilon_{r}}{t} \text { permittivity } \\
& \pi \sim_{1} \mu_{1} \text { note tox oxide } \\
& \text { dectron dielectric thickness } \\
& \text { copecitance pr } \\
& \text { unit ore }
\end{aligned}
$$

3) $V_{G S}>V_{T h} \quad V_{D S}>V_{G S}-V_{T h}$
saturation region

$$
I_{D}=\frac{1}{2} K_{n}\left(V_{G S}-V_{T_{n}}\right)^{2}
$$

MOS, $\quad V_{T_{p}}<0$
threshold
voltage of
MOS

A OFF $\quad V_{G S}>V_{T_{P}}$
2) OHMIC REGION

$$
V_{G S}<V_{T_{P}}<0
$$

and $\quad 0>V_{D S}>V_{G S}-V_{T_{P}}$
(by \hat{d} filiation)

$$
I_{D}=K_{P}\left[\left(V_{G S}-V_{T P}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]
$$

3) SATURATION REGION

$$
K_{p}=\frac{w}{L} \mu_{p} C_{0}{ }_{c}
$$

$$
\begin{aligned}
& \text { SATURATION REGION } \\
& V_{G S}<V_{T P}<0 \text { and } V_{D S}<V_{G S}-V_{T P}<0 \rightarrow I_{D}=\frac{1}{2} K_{P}\left(V_{G S}-V_{T P}\right)^{2}
\end{aligned}
$$

Transfer characieristic of the chos inverter

$$
V_{\text {in }}=V_{G S n}
$$

$$
V_{\text {in }}-V_{D D}=V_{G S_{p}}
$$

$V_{\text {out }}=V_{D S_{n}}$
$V_{o u t-} V_{D D}=V_{D S_{p}}$
nMos
DOFF $V_{\text {in }}<V_{T_{n}}$
DOMmIC REGION

$$
V_{\text {in }}>V_{\text {th }}
$$

$$
V_{\text {out }}<V_{\text {in }}-V_{T_{n}}
$$

I-V Transfor characteristic of the CMOS invorter
(1) PMOS OHMICREGION - NMOS OfF
(2) PMOS OHMIC REGION - NMOS SAR
(3) PMOS SAT - NMOS SAT

(4) PMIGS SAT-NHOS OHMIC | REGION |
| :---: |

(5) Pros off NTOS OHMIC REGION

Balanced inverter
when $V_{\text {in }}=\frac{V_{D D}}{2}$ then $V_{\text {out }}=\frac{V_{D D}}{2}$
if The pros and hos characteristics ale complementary

$$
\begin{aligned}
& \rightarrow V_{T_{p}}=-V_{T_{h}} \rightarrow(\text {-brain with doping }) \\
& \text { eND }
\end{aligned}
$$

$$
\begin{aligned}
& w_{n} \mu_{n}=\omega_{p} \mu_{p}
\end{aligned}
$$

) TAAPITIONA MOS .) MODERN COS

$$
\mu_{n} \sim 2 \mu_{p} \rightarrow w_{p} \sim 2 w_{n} \quad \mu_{n}=\mu_{p} \Rightarrow w_{p}-w_{n}
$$

IV CHARACTERISTICS FOR SMALL TRANSISTORS ($L<100 \mathrm{~nm}$)

Propagation delay

CMOS Logic Page 7

$-\frac{d V_{C}}{d t}=\frac{I_{D}}{C} \Rightarrow \frac{d V_{\text {out }}}{d t}=-\frac{I_{D}}{C}$
Constant curcent
untie $V_{D S}<V_{G S}-V_{T n} \rightarrow V_{\text {out }}<V_{D_{D}}-V_{T_{n}}$

$$
t_{P H L}=\frac{C V_{D D} / 2}{I_{D}}=\frac{C V_{D D}}{2 I_{3}}-\frac{C V_{D D}}{2 \frac{k_{n}}{2}\left(V_{D D}-V_{n}\right)^{2}} \cdot \frac{C V_{D D}}{\cdot k_{n}\left(B_{D}-V_{t_{A}}\right)^{2}}
$$

what is C?

$$
\underbrace{\text { output }}_{\text {equivalent capacitance at the inverter }} \boldsymbol{C = C _ { w } + C _ { g s _ { n } } + C _ { y s _ { p } } + 2 C _ { g d _ { p } } + 2 C _ { f l _ { n } }}
$$

$$
\begin{aligned}
& -H_{0} \|_{o v} t<0 Q_{=} \text {comp }_{p} v_{D D}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta Q={ }^{C} C_{\partial P} V_{D D} \\
& t>0 Q=2 C_{g} p_{p} \\
& \Delta a .2 c g d_{0} v_{0,}
\end{aligned}
$$

\qquad

LONGER HOSFETS
o if the inverter is balanced then $t_{\text {phil }}=t_{p L H}=t_{p}$ flock $=\frac{1}{t_{\text {clock }}} \ll \frac{1}{t_{p}}$

1) $V_{D D} \uparrow t_{p} f_{\text {clock }} \uparrow$
2) $\int_{\mu_{p} \uparrow}^{\mu_{n} \uparrow} t_{p} \downarrow$ flock \uparrow
3) $L \downarrow t_{p} d \downarrow$ frock $\phi \uparrow$

SMAL HOSFETS ($L<100 \mathrm{~nm}$)

$$
\begin{aligned}
& I_{B N}=\frac{W \varepsilon_{0} \varepsilon_{r}}{t_{o x}} V_{S a t}\left(V_{D D}-V_{T_{n}}\right) \\
& \rightarrow W L \propto L^{2} \\
& t_{p H L}=\frac{C V_{D D}}{2 I_{O N_{n}}}=\frac{C V_{D D} t_{0 x}}{2 W_{n} \varepsilon_{0} \varepsilon_{-\infty} V_{\delta_{a}} t_{n}\left(V_{D D}-V_{t_{n}}\right)} \\
& t_{P L H}=\frac{C V_{P D}}{2 I_{O N_{p}}}=\frac{C V_{P D} t_{o x}}{2 W_{P} \varepsilon_{0} \varepsilon_{r} v_{S_{a}} t_{p}\left(V_{D_{D}-}\left|V T_{p}\right|\right)} \\
& \text { if } V_{D D} \uparrow t_{P H L} \sim \quad \leftarrow \quad t_{p} \sim L \\
& \text { if } v_{s a t} t_{h} \text { tpd fock } \uparrow \\
& v_{\text {sat }}{ }^{4} \\
& \text { if } L \downarrow t_{p} b \text { folock } \uparrow \leqslant
\end{aligned}
$$

Power consumption

AMOS TRANSISTOR
\rightarrow Transfer characteristics

CMOS Logic Page 13

Dynamic Power Consumption

(A) Energy spent by the power supply

$$
E=\int V_{D D} i(t) d t=V_{D D} \int i(t) d t=V_{D D} C V_{D D}=C V_{D D}^{2}
$$

energy stored on the capacitance

$$
E_{C}=\frac{1}{2} c v_{D D}^{2}
$$

(B) Power supply spend No energy ENERGY CONSUMPTION TER CYCLE $E=C V_{D D}^{2}$

Dynamic power consumption $\quad P_{D}=C V_{D D}^{2} f_{d k}$

$$
P_{D}=C V_{D O}^{2} f_{c k} \alpha{ }_{c}^{\alpha} \text { activity factor }
$$

for the whole chip $0 \lll 1 \quad\left(\begin{array}{rl}\text { typically } \\ \alpha \sim \sigma .1)\end{array}\right.$

$$
\begin{aligned}
P_{D}= & \underbrace{\sum_{i} c_{i}} V_{D D}^{2} f d k \\
P_{S}= & \sum_{i} I_{D D} I_{D F F} C_{\text {TOT }} V_{D D}^{2} f d t V_{D D} I_{\text {OfF_TOT }} \\
& P_{\text {TOT }}=P_{D}+P_{S}
\end{aligned}
$$

Scaling of CMOS technology

$$
\begin{aligned}
& \text { o } P_{D}=C V_{D D}^{2} f l e k \\
& \text { o } P_{S}=V_{D D} I_{D F F} \\
& \rightarrow t_{P}=\frac{C l_{D D}}{2 I_{D N}}=\frac{L}{2 V_{S a t} t}\left(\frac{V_{D D}}{V_{D D}-V_{I n}}\right) \\
& \rightarrow T_{c l o c k} \sim 20 t_{P} \\
& \rightarrow C_{\infty} \frac{W L}{T_{O X}}
\end{aligned}
$$

GENERALIZED SCALING
3 scaling factor for VCTAGE $\lambda \quad(\lambda>1)$
0 scaling factor for GEOHETRY S ($s>1$)

QUANTITY	SCALING FACTOR
W, L, tox	$1 / s$
$V_{D D} V_{\text {Tn }}$	$1 / \lambda$
t_{p}	$1 / s$
feck	s
P_{D}	$1 / \lambda^{2}$
Area	$1 / s^{2}$

Phase 1 1980 $\simeq 1992$ CONSTANT VOLTAGE SCALING

$$
V_{D D} \text {. } 5 V
$$

$$
\lambda=1 \quad S>1
$$

$\left|\frac{P_{D}}{A} \propto s^{2}\right|$ INCREASE OF Power density per unit ArEA
Phase 2 la9z-2002 Constant field schung
λ eS $\quad \frac{P_{D}}{A}$ is CONSTANT CONSTANT POWER DENSITY PER WT

Phase 3
Almost stopped Voltage scaung $\lambda \sim 1$ geometry siding S
No INCREA SE or REDUCTION OF flock

$$
\begin{aligned}
& P_{D}={\underset{p}{D D}}_{2}^{c} f_{1 \text { dock }} \propto 1 / s \\
& 0 \frac{1}{5} 2_{1} \sim_{1} \\
& A \propto 1 / s^{2} \quad P_{D} / A \propto s
\end{aligned}
$$

if λ is slight Cargoes than 1
and f decceses we have $\frac{P_{D}}{A} \sim$ constant

