DC-DC Converters

DC-DC Converters

Figure 7-1 A dc-dc converter system.

Ideal concept of step-down

 converter with PWM* switching
(b) $\quad V_{0}=V_{d} \frac{t_{o n}}{T_{s}}$

Figure 7-2 Switch-mode dc-dc conversion.
Assumptions: Switches, L, C are lossless, DC input has zero internal impedance, load is an equivalent R
This cannot work: 1. Load is inductive and can destroy switch by dissipating all stored energy, 2 . output voltage must be continuous

Step-down (buck) converter

DC power supplies, DC motor drives -- $\mathrm{V}_{\mathrm{o}}<\mathrm{V}_{\mathrm{d}}$
Low-pass filter keeps output voltage constant

Note: $2^{\text {nd }}$ order non dissipative filter

$$
f_{c}=\frac{1}{2 \pi} \frac{1}{\sqrt{L C}} \ll f_{s}
$$

Diode avoids voltage spike on switch (when switch is off, diode provides current to L)

Continuous-conduction mode

Current in L is always >0

- $t_{\mathrm{on}}: \frac{d I}{d t}=\frac{V_{d}-V_{o}}{L}$
- $t_{\mathrm{off}}: \frac{d I}{d t}=-\frac{V_{o}}{L}$

At steady state: $I\left(t+T_{s}\right)=I(t)$.
Therefore
$\frac{V_{d}-V_{o}}{L} t_{\text {on }}-\frac{V_{0}}{L} t_{\text {off }}=0$
$\frac{V_{o}}{V_{d}}=\frac{t_{o n}}{T_{s}}=D$

Limit of continuous conduction

If the ripple amplitude $I_{L B} \equiv \frac{I_{\text {peak }}}{2}=I_{o}$, the converter is at the limit of continuous conduction (i.e. $\min \left\{I_{L}\right\}=0$)

$$
I_{L B} \equiv \frac{I_{\text {peak }}}{2}=\frac{t_{\text {on }}\left(V_{d}-V_{o}\right)}{2 L}=\frac{D T_{s} V_{d}(1-D)}{2 L}=I_{L B \max } 4 D(1-D)
$$

(a)

(b)

Figure 7-6 Current at the boundary of continuous-discontinuous conduction: (a) current waveform; (b) $I_{L B}$ versus D keeping V_{d} constant.

Discontinuous-conduction mode

 with constant $\mathrm{V}_{\mathrm{d}}-$ Motor drives$$
\begin{aligned}
& I_{\text {peak }}=\frac{\left(V_{d}-V_{o}\right) D T_{S}}{L}=\frac{V_{o} \Delta_{1} T_{S}}{L} \\
& I_{\text {peak }}=\frac{V_{d} T_{S}}{L} \frac{D \Delta_{1}}{D+\Delta_{1}} \\
& I_{\text {peak }}=4 I_{\mathrm{LBmax}} \frac{D \Delta_{1}}{D+\Delta_{1}}
\end{aligned}
$$

Figure 7-7 Discontinuous conduction in step-down converter.

$$
I_{o}=4 I_{\text {LBmax }} D \Delta_{1} \longrightarrow \frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+I_{o} /\left(4 I_{L B \max }\right)}
$$

Limits of continuous-discontinuous conduction (constant Vd)

$\frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+\frac{I_{o}}{4 I_{\text {LBmax }}}}$ Figure $7-8$ Step-down convereter characerisisis keeping V_{d} constant.

Discontinuous-conduction with constant Vo
 DC voltage supply

At the limit of continuous conduction

$$
I_{L B}=\frac{V_{o} T_{S}(1-D)}{2 L}=I_{\mathrm{LB} \max }(1-D)
$$

We can write D explicitly from:

$$
\begin{aligned}
& I_{\text {peak }}=\frac{V_{o} \Delta_{1} T_{S}}{L}=2 I_{\mathrm{LBmax}} \Delta_{1} \\
& I_{o}=\frac{I_{\mathrm{peak}}\left(D+\Delta_{1}\right)}{2}=I_{\mathrm{LBmax}} \Delta_{1}\left(D+\Delta_{1}\right) \quad \frac{V_{d}}{V_{o}}=\frac{D+\Delta_{1}}{D} \\
& \frac{I_{o}}{I_{\mathrm{LBmax}}}=D^{2} \frac{V_{d}}{V_{o}}\left(1-\frac{V_{d}}{V_{o}}\right) \square D=\left[\frac{V_{o}}{V_{d}} \frac{I_{o}}{I_{L B \max }}\left(1-\frac{V_{d}}{V_{o}}\right)^{-1}\right]^{\frac{1}{2}}
\end{aligned}
$$

Discontinuous-conduction with constant Vo

Continuous: $I_{o}>I_{L B}$
$D>1-\frac{I_{o}}{I_{\text {LBmax }}}$
$D=\frac{V_{o}}{V_{d}}$
Discontinuous: $I_{o}<I_{L B}$
$D<1-\frac{I_{o}}{I_{\text {LBmax }}}$
$D=\left[\frac{V_{o}}{V_{d}} \frac{I_{o}}{I_{L B \max }}\left(1-\frac{V_{d}}{V_{o}}\right)^{-1}\right]^{\frac{1}{2}}$

Figure 7-9 Step-down converter characteristics keeping V_{o} constant.

Output voltage ripple

First order calculation:
The average il flows in the load, and the ripple component in C .

Additional charge:

$$
\Delta Q=\frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T_{S}}{2}
$$

Current ripple:

$$
\Delta I_{L}=\left(V_{o} / L\right)(1-D) T_{S}
$$

Voltage ripple:

$$
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{V_{o}}{8 L C} T_{S}^{2}(1-D)
$$

$$
\frac{\Delta V_{o}}{V_{o}}=\frac{\pi^{2}}{2}(1-D) \frac{f_{c}^{2}}{f_{s}^{2}}
$$

Step-up (boost) converter

- DC power supplies
- Regenerative breaking of DC motors

Output voltage always larger than the input

Switch on \rightarrow diode off, output
 isolated, L accumulates energy from input
Switch off \rightarrow diode on, load receives energy from input and from L

Continous-conduction mode

Periodic conditions:
$\frac{t_{\text {on }} V_{d}}{L}+\frac{t_{\text {off }}\left(V_{d}-V_{o}\right)}{L}=0$

if $t_{\text {on }}=D T_{s}$ and

$$
t_{\mathrm{off}}=(1-D) T_{s}
$$

$T_{s} V_{d}+T_{S}(1-D) V_{o}=0$
$V_{o} \quad 1 \frac{V_{d}}{V_{0}}=l-D \rightarrow D$
$\frac{V_{o}}{V_{d}}=\frac{1}{1-D}$
No losses:
$V_{o} I_{o}=V_{d} I_{d}$

Continuous-discontinuous boundary

Average current in L = ripple :

$$
\begin{aligned}
& I_{L B}=\frac{V_{d} t_{o n}}{2 L} \\
& =\frac{V_{o}(1-D) T_{s} D}{2 L}
\end{aligned}
$$

Average output

 current at the limit:$$
\begin{aligned}
& I_{O B}=I_{L B}(1-D) \\
& =\frac{V_{o} T_{S}(1-D)^{2} D}{2 L}
\end{aligned}
$$

$I_{L B}$ is max if $\mathrm{D}=0.5 \rightarrow I_{L B \max }=\frac{V_{o} T_{S}}{8 L}$,
$I_{o B}$ is max if $\mathrm{D}=1 / 3 \rightarrow I_{o B \max }=\frac{2 V_{o} T_{S}}{27 L} \rightarrow I_{o B}=\frac{27}{4}(1-D)^{2} D I_{o B \max }$

Discontinuous conduction mode (constant V_{o})

Periodic conditions:

$$
\begin{gathered}
\frac{D T_{s} V_{d}}{L}+\frac{\Delta_{1} T_{s}\left(V_{d}-V_{o}\right)}{L}=0 \\
\frac{V_{o}}{V_{d}}=1+\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}
\end{gathered}
$$

* Average current in L
($I_{d} T_{s}=\frac{D T_{s} V_{d}}{L} \frac{\left(D+\Delta_{1}\right) T_{s}}{2}$

Average output current

$$
\begin{aligned}
& I_{o}=I_{d} \frac{\Delta_{1}}{D+\Delta_{1}}=\frac{T_{s} V_{d}}{2 L} D \Delta_{1} \\
& =\frac{27}{4} I_{o B \max } \frac{V_{d}}{V_{o}} D^{2} \frac{V_{d}}{V_{o}-V_{d}}
\end{aligned} \quad D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B \max }}\right]^{\frac{1}{2}}
$$

Continuous-discontinuous mode (constant V_{o})

Continuous mode:
$I_{o}>I_{o B}$
$=I_{o B \max } \frac{27(1-D)^{2} D}{4}$
$D=1-\frac{V_{d}}{V_{o}}$
Discontinuous mode:

$$
\begin{gathered}
I_{o}<I_{O B} \\
D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B \max }}\right]^{\frac{1}{2}}
\end{gathered}
$$

Figure 7-15 Step-up converter characteristics keeping V_{o} constant.

Losses and ripple

Losses: inductor, capacitor, switch, diode
Ripple: first order assumption: when the switch is on the C is discharged through the load

$$
\begin{gathered}
\Delta V_{o}=\frac{\overbrace{\Delta Q}}{C}=\frac{T_{o n}}{C}=\frac{V_{o} D T_{s}}{R C} \\
\frac{\Delta V_{o}}{V_{o}}=D \frac{T_{S}}{\tau}
\end{gathered}
$$

Buck-boost converter

Negative DC power supply

Switch on: inductance
accumulates energy, diode off, C supplies the load
Switch off: diode on, inductance transfers energy to the capacitance and to the load

Periodic conditions in continuous conduction mode:

$$
\frac{D T_{s} V_{d}}{L}-\frac{V_{o}(1-D) T_{s}}{L}=0
$$

$$
\begin{aligned}
& \frac{V_{o}}{V_{d}}=\frac{D}{1-D}=\frac{I_{d}}{I_{o}} \\
& I_{L}=I_{o}+I_{d}=\frac{I_{o}}{1-D}
\end{aligned}
$$

Continuous-discontinuous boundary

Current in L at the boundary

$$
I_{L B}=\frac{D T_{s} V_{d}}{2 L}
$$

$$
I_{L B}=I_{L B \max }(1-D)
$$

Output current at the boundary:

(a)

$$
I_{o B}=I_{O B \max }(1-D)^{2}
$$

(b)

Discontinuous conduction

Periodic conditions:

$$
\begin{gathered}
\frac{D V_{d} T_{s}}{L}-\frac{V_{o} \Delta_{1} T_{s}}{L}=0 \\
\frac{V_{o}}{V_{d}}=\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}
\end{gathered}
$$

Average current in L :

$$
I_{L} T_{S}=\frac{V_{d} D T_{S}}{L} \frac{\left(D+\Delta_{1}\right) T_{S}}{2}
$$

Therefore:

Figure 7-21 Buck-boost converter waveforms in a discontinuous-conduction mode.

$$
\begin{aligned}
& I_{L}=I_{o}\left(1+\frac{D}{\Delta_{1}}\right)=\frac{V_{d} T_{s}}{2 L} D\left(D+\Delta_{1}\right) \\
& \\
& \quad \frac{I_{o}}{I_{o B \max }}=D \Delta_{1} \frac{V_{d}}{V_{o}}=D^{2}\left(\frac{V_{d}}{V_{o}}\right)^{2} \rightarrow D=\frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{o B \max }}}
\end{aligned}
$$

Continuous-discontinuous mode

Continuous operation
$I_{o}>I_{O B}=I_{O B \max }(1-D)^{2}$
$D=\frac{V_{o}}{V_{d}-V_{o}}$
Discontinuous operation $\begin{array}{r}\text { D })_{D}^{2} \\ 1.00 \\ \hline\end{array}$
$V_{0}=$ Constant
$I_{o}>I_{o B}$
$D=\frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{o B m a x}}}$

Figure 7-22 Buck-boost converter characteristics keeping V_{o} constant.

Output voltage ripple

When the switch is ON, C is discharged through the load

$$
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{D T_{s} V_{o}}{R C} \rightarrow \frac{\Delta V_{o}}{V_{o}}=D \frac{T_{s}}{\tau}
$$

Cuk DC-DC converter

Negative DC power supply

DC analysis: $V_{C 1}=V_{d}+V_{o}$ note: $\left(V_{C 1}>V_{d}\right)$
Assumption: Large C1 (Voltage almost constant)
Switch OFF: C1 is charged through L1 and the input, Diode ON, L2 supplies energy to R (currents in L1 and L2 decrease)
Switch ON: L1 receives energy, Diode OFF, C supplies current to R, C1 gives energy to L2 (currents in L1 and L2 increase)

Figure 7-25 Cúk converter.

Cuk

Periodic conditions in L1
$V_{d} D T_{s}+(1-D) T_{s}\left(V_{d}-V_{C 1}\right)=0$
$V_{C 1}=\frac{V_{d}}{1-D}$
Periodic conditions in L2
$\left(V_{C 1}-V_{o}\right) D T_{s}-V_{0}(1-\mathrm{D}) T_{s}=0$

$V_{C 1}=\frac{V_{o}}{D}$
Therefore
$\frac{V_{o}}{V_{d}}=\frac{D}{1-D}$
Pro: currents
in L1 and L2 ripple free
Con: C1 must be large

Full bridge DC-DC converter

When switch TA+ is on:
$i_{o}>0: i_{o}$ through TA+
$i_{o}<0: i_{o}$ through DA+
$V_{A N}=V_{d}$ dutycycle $\left(T A^{+}\right)$

Figure 7-27 Full-bridge dc-dc converter.

$$
V_{o}=V_{A N}-V_{B N}
$$

Four quadrant operation
on V_{o}, I_{o}

PWM with bipolar

 voltage switching ${ }_{t=0}$When $v_{\text {control }}>v_{\text {tri }}$,
TA+ and TB- are ON
Duty cycle

$$
D_{1}=\frac{1}{2}+\frac{v_{\text {control }}}{\widehat{V_{t r i},},} \frac{1}{2}
$$

When $v_{\text {control }}<v_{\text {tri }}$,

$$
\begin{aligned}
& \mathrm{TA} \text { - and TB+ are ON } \\
& D_{2}=1-D_{d,} \quad{ }^{v_{B N}} \\
& V_{o}=V_{A N}-V_{B N}=D_{1} V_{d}-D_{2} V_{d} \\
& =\left(2 D_{1}-1\right) V_{d} \\
& =\frac{V_{d}}{\widehat{V_{t r i}}} v_{\text {control }} \quad \text { (d) } 0-=v_{A N}-\overline{v_{B}}
\end{aligned}
$$

(a)

PWM with unipolar

When $v_{\text {control }}>v_{\text {tri, }}{ }^{(a)}$
TA+ and TB- are ON
Duty cycle

$$
D_{1}=\frac{1}{2}+\frac{v_{\text {control }}}{\widehat{V_{\text {tri }}}} \frac{1}{2} \frac{(b)}{2}
$$

When $-v_{\text {control }}<v_{\text {tri }}$,
TA- and TB+ are ON
(d)

hing

On-state:

$$
\text { state: } T_{\left.A_{A+}, T_{B-}\right)\left\{\left(T_{A+}, T_{B-}\right) \uparrow\left(T_{A+}, T_{B-}\right)\right.}^{\left(T_{A-}, T_{B-}\right)}\left(T_{A+}, T_{B+}\right)
$$

$V_{o}=V_{A N}-V_{B N}$
$=D_{1} V_{d}-D_{2} V_{d}$
$=\left(2 D_{1}-1\right) V_{d}$
$=\frac{V_{d}}{\widehat{V_{\text {tri }}}} v_{\text {control }}$
(e)

PWM signal generation

(a)

(switching frequency $f_{s}=\frac{1}{T_{s}}$)

$$
\begin{aligned}
& V_{c_{1}}=V_{d}+V_{0} \\
& t_{\text {on }} \text { D } T_{5} \\
& \Delta I_{L_{1}}=\operatorname{ton}_{L_{d}}^{L_{d}}=t_{\text {orf }} \frac{V_{G}-V_{d}}{L_{1}}=\frac{T_{\text {off }} V_{1}}{L_{1}} \\
& D V d=(1-D) V_{0} \\
& V_{0}=\frac{D}{1-D} V_{D} \\
& \text { (buckethait PRo: Grente } \\
& \text { tcontima } \\
& \text { dalluccoritio } \\
& \text { Covrto: © } 1 \text { gande }
\end{aligned}
$$

Full Bridge DCDC Converter (4Q)

D_{A} idaty dy de of $T_{\mu}^{+} \quad V_{A N}=D_{1} V_{d}$
D_{B} : duTy cycle of $\left.T_{B}^{+} \quad V_{B N}=D_{2} V_{d}\right\} V_{0}=V_{A N}-V_{B N}=\left(D_{1}-D_{2}\right) V_{d}$ Contor: PWM $>$ bipolar roltage Iunipolar botage

PWM with bipolar voltage

PWM with unipolar voltage

A: T_{A}^{+}on if $V_{\text {contool }} \mathrm{Vtri}$
B. T_{B}^{+}ON if ${ }^{f}$ roontue $>v_{\text {thi }}$

$$
\begin{aligned}
& D_{1}=\frac{1}{2}+\frac{1}{2} \frac{v_{\text {control }}}{V_{\text {max }}} \\
& D_{2}=\frac{1}{2}-\frac{1}{2} \frac{V_{\text {contol }}}{v_{\text {max }}} \\
& D_{2}=1-D_{1}
\end{aligned}
$$

$$
V_{0}=V_{\text {conteol }} \frac{V_{d}}{V_{\text {max }}}
$$

Marin do $k l a 0$ (ode oe-rd) ripede inftriove ripitto al cons bipolare

