DC-DC Converters

DC-DC Converters

Typical uses:

- DC Power supplies
- DC Motor drive

Types of converters

- Step-down (buck)
- Step-up (boost)
- Buck-boost
- Cuk

Figure 7-1 A dc-dc converter system.

Assumptions: Switches, L, C are lossless, DC input has zero internal impedance, load is an equivalent R

This cannot work: 1. Load is inductive and can destroy switch by dissipating all stored energy, 2. output voltage must be continuous

Step-down (buck) converter

DC power supplies, DC motor drives $-V_o < V_d$

Continuous-conduction mode

Limit of continuous conduction

If the ripple amplitude $I_{LB} \equiv \frac{I_{peak}}{2} = I_o$, the converter is at the limit of continuous conduction (i.e. $min\{I_L\} = 0$) $I_{LB} \equiv \frac{I_{peak}}{2} = \frac{t_{on}(V_d - V_o)}{2I} = \frac{DT_s V_d (1 - D)}{2I} = I_{LBmax} 4D(1 - D)$ $V_d = \text{Constant}$ v_L $I_{LB} = I_{oB}$ $(V_d - V_o)$ $I_{LB} = I_{oB}$ ⁱL, peak $--I_{LB, \max} = \frac{T_s V_d}{8L}$ 0 $(-V_{o})$ O 0.5 1 0 (a) (6)

Figure 7-6 Current at the boundary of continuous-discontinuous conduction: (a) current waveform; (b) I_{LB} versus D keeping V_d constant.

Limits of continuous-discontinuous conduction (constant Vd)

Discontinuous-conduction with

constant Vo

DC voltage supply

At the limit of continuous conduction

$$I_{LB} = \frac{V_o T_s (1 - D)}{2L} = I_{LBmax} (1 - D)$$

We can write D explicitly from:

$$I_{\text{peak}} = \frac{V_o \Delta_1 T_s}{L} = 2I_{\text{LBmax}} \Delta_1$$

$$I_o = \frac{I_{\text{peak}}(D + \Delta_1)}{2} = I_{\text{LBmax}} \Delta_1 (D + \Delta_1) \qquad \frac{V_d}{V_o} = \frac{D + \Delta_1}{D}$$

$$\frac{I_o}{I_{\text{LBmax}}} = D^2 \frac{V_d}{V_o} \left(1 - \frac{V_d}{V_o}\right) \implies D = \left[\frac{V_o}{V_d} \frac{I_o}{I_{\text{LBmax}}} \left(1 - \frac{V_d}{V_o}\right)^{-1}\right]^{\frac{1}{2}}$$

Discontinuous-conduction with constant Vo

Figure 7-9 Step-down converter characteristics keeping V_o constant.

Output voltage ripple First order calculation: $(V_d - v_o)$ The average iL flows in the o load, and the ripple component in C. Additional charge: ΔI_L $\Delta Q = \frac{1}{2} \frac{\Delta I_L}{2} \frac{T_s}{2}$ ΔQ **Current ripple:** $I_L = I_o$ $\Delta I_L = (V_o/L)(1-D)T_s$ Voltage ripple: $\Delta V_o = \frac{\Delta Q}{C} = \frac{V_o}{8LC} T_s^2 (1-D)$ $\frac{\Delta V_o}{V_o} = \frac{\pi^2}{2} (1 - D) \frac{f_c^2}{f_s^2}$

Step-up (boost) converter

- DC power supplies
- Regenerative breaking of DC motors

Output voltage always larger than the input

Switch on → diode off, output isolated, L accumulates energy from input

Switch off → diode on, load receives energy from input and from L

Continous-conduction mode

Continuous-discontinuous boundary

 $I_{LB} \text{ is max if } D=0.5 \rightarrow I_{LBmax} = \frac{V_o T_s}{\frac{8L}{2}},$ $I_{oB} \text{ is max if } D=1/3 \rightarrow I_{oBmax} = \frac{\frac{2V_o T_s}{2}}{27L} \rightarrow I_{oB} = \frac{27}{4}(1-D)^2 D I_{oBmax}$

Discontinuous conduction mode (constant V_o) Periodic conditions: $\frac{DT_sV_d}{L} + \frac{\Delta_1 T_s(V_d - V_o)}{L} = 0$ $\frac{V_o}{V_d} = 1 + \frac{D}{\Delta_1} = \frac{I_d}{I_o}$ Average current in L $I_dT_s = \frac{DT_sV_d}{L} \frac{(D + \Delta_1)T_s}{2}$ Average output current $I_o = I_d \frac{\Delta_1}{D + \Delta_1} = \frac{T_sV_d}{2L} D\Delta_1$ $= \frac{27}{4} I_{oBmax} \frac{V_d}{V_o} D^2 \frac{V_d}{V_o - V_d}$ $D = \left[\frac{4}{27} \frac{V_o}{V_d} \left(\frac{V_o}{V_d} - 1\right) \frac{I_o}{I_{oBmax}}\right]^2$

Continuous-discontinuous mode (constant V_o)

Figure 7-15 Step-up converter characteristics keeping Vo constant.

Losses and ripple

Losses: inductor, capacitor, switch, diode

Ripple: first order assumption: when the switch is on the C is discharged through the load

$$\Delta V_o = \frac{\Delta Q}{C} = \frac{I_o Q T_s}{C} = \frac{V_o D T_s}{RC}$$
$$\frac{\Delta V_o}{V_o} = D \frac{T_s}{\tau}$$

Buck-boost converter

Continuous-discontinuous boundary

Discontinuous conduction

Periodic conditions:

$$\frac{DV_d T_s}{L} - \frac{V_o \Delta_1 T_s}{L} = 0$$

$$\frac{V_o}{V_d} = \frac{D}{\Delta_1} = \frac{I_d}{I_o}$$

Average current in L: $I_L T_s = \frac{V_d D T_s}{L} \frac{(D + \Delta_1) T_s}{2}$

Therefore:

Figure 7-21 Buck-boost converter waveforms in a discontinuous-conduction mode.

$$I_{L} = I_{o} \left(1 + \frac{D}{\Delta_{1}} \right) = \frac{V_{d}T_{s}}{2L} D(D + \Delta_{1})$$
$$\frac{I_{o}}{I_{oBmax}} = D\Delta_{1} \frac{V_{d}}{V_{o}} = D^{2} \left(\frac{V_{d}}{V_{o}} \right)^{2} \rightarrow D = \frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{oBmax}}}$$

Continuous-discontinuous mode

Figure 7-22 Buck-boost converter characteristics keeping V_o constant.

Output voltage ripple

When the switch is ON, C is discharged through the load

$$\Delta V_o = \frac{\Delta Q}{C} = \frac{DT_s V_o}{RC} \rightarrow \frac{\Delta V_o}{V_o} = D \frac{T_s}{\tau}$$

Cuk DC-DC converter

Negative DC power supply

DC analysis: $V_{C1} = V_d + V_o$ note: $(V_{C1} > V_d)$ Assumption: Large C1 (Voltage almost constant) Switch OFF: C1 is charged through L1 and the input, Diode ON, L2 supplies energy to R (currents in L1 and L2 decrease) Switch ON: L1 receives energy, Diode OFF, C supplies current to R, C1 gives energy to L2 (currents in L1 and L2 increase)

Full bridge DC-DC converter

 $V_o = V_{AN} - V_{BN}$ Four quadrant operation on V_o , I_o

PWM signal generation

Controlli Pagina 1

Controlli Pagina 3

