DC-DC Converters

Typical uses:
• DC Power supplies
• DC Motor drive

Types of converters
• Step-down (buck)
• Step-up (boost)
• Buck-boost
• Cuk
• Full-Bridge

Figure 7-1 A dc–dc converter system.
Ideal concept of step-down converter with PWM* switching
(* Pulse Width Modulation)

Assumptions: Switches, L, C are lossless, DC input has zero internal impedance, load is an equivalent R

This cannot work: 1. Load is inductive and can destroy switch by dissipating all stored energy, 2. output voltage must be continuous

Step-down (buck) converter

DC power supplies, DC motor drives -- $V_o < V_d$

Low-pass filter keeps output voltage constant

Note: 2nd order non dissipative filter

$$f_c = \frac{1}{2\pi \sqrt{LC}} \ll f_s$$

Diode avoids voltage spike on switch (when switch is off, diode provides current to L)
Continuous-conduction mode

Current in L is always > 0

- $t_{on}: \frac{dl}{dt} = \frac{V_d - V_o}{L}$
- $t_{off}: \frac{dl}{dt} = -\frac{V_o}{L}$

At steady state: $I(t + T_s) = I(t)$.

Therefore

$$\frac{V_d - V_o}{L} t_{on} = \frac{V_o}{L} t_{off} = 0$$

$$\frac{V_o}{V_d} = \frac{t_{on}}{T_s} = D$$

Limit of continuous conduction

If the ripple amplitude $I_{LB} \equiv \frac{I_{peak}}{2} = I_o$, the converter is at the limit of continuous conduction (i.e. $\min\{I_L\} = 0$)

$$I_{LB} \equiv \frac{I_{peak}}{2} = \frac{t_{on}(V_d - V_o)}{2L} = \frac{DT_s V_d (1 - D)}{2L} = I_{LB,max} 4D (1 - D)$$

Figure 7-6 Current at the boundary of continuous–discontinuous conduction: (a) current waveform; (b) I_{LB} versus D keeping V_d constant.
Discontinuous-conduction mode with constant V_d

$$I_{\text{peak}} = \frac{(V_d - V_o)DT_S}{L} = \frac{V_o \Delta_1 T_S}{L}$$

$$I_{\text{peak}} = \frac{V_d T_S}{L} \frac{D \Delta_1}{D + \Delta_1}$$

$$I_{\text{peak}} = 4I_{LB\text{max}} \frac{D \Delta_1}{D + \Delta_1}$$

$$I_o T_S = \frac{I_{\text{peak}}(D + \Delta_1)T_S}{2}$$

$$I_o = 4I_{LB\text{max}} D \Delta_1$$

$$\frac{V_o}{V_d} = \frac{D}{D^2 + I_o/(4I_{LB\text{max}})}$$

Motor drives

Figure 7-7 Discontinuous conduction in step-down converter.

Limits of continuous-discontinuous conduction (constant V_d)

Continuous

$$\frac{I_o}{I_{LB\text{max}}} > 4D(1 - D)$$

$$\frac{V_o}{V_d} = D$$

Discontinuous

$$\frac{I_o}{I_{LB\text{max}}} < 4D(1 - D)$$

$$\frac{V_o}{V_d} = \frac{D^2}{D^2 + \frac{I_o}{4I_{LB\text{max}}}}$$

Figure 7-8 Step-down converter characteristics keeping V_d constant.
Discontinuous-conduction with constant Vo

At the limit of continuous conduction

\[I_{LB} = \frac{V_0 T_S (1 - D)}{2L} = I_{LB\text{max}} (1 - D) \]

We can write D explicitly from:

\[I_{\text{peak}} = \frac{V_0 \Delta_1 T_S}{L} = 2 I_{LB\text{max}} \Delta_1 \]

\[I_o = \frac{I_{\text{peak}} (D + \Delta_1)}{2} = I_{LB\text{max}} \Delta_1 (D + \Delta_1) \]

\[\frac{V_d}{V_o} = \frac{D + \Delta_1}{D} \]

\[\frac{I_o}{I_{LB\text{max}}} = D^2 \frac{V_d}{V_o} \left(1 - \frac{V_d}{V_o}\right) \]

\[D = \left[\frac{V_o}{V_d I_{LB\text{max}}} \left(1 - \frac{V_d}{V_o}\right)^{-1}\right]^{\frac{1}{2}} \]

Discontinuous-conduction with constant Vo

Continuous: \(I_o > I_{LB} \)

\[D > 1 - \frac{I_o}{I_{LB\text{max}}} \]

\[D = \frac{V_o}{V_d} \]

Discontinuous: \(I_o < I_{LB} \)

\[D < 1 - \frac{I_o}{I_{LB\text{max}}} \]

\[D = \left[\frac{V_o}{V_d I_{LB\text{max}}} \left(1 - \frac{V_d}{V_o}\right)^{-1}\right]^{\frac{1}{2}} \]

Figure 7-9 Step-down converter characteristics keeping \(V_o \) constant.
Output voltage ripple

First order calculation:
The average i_L flows in the load, and the ripple component in C.

Additional charge:
$$\Delta Q = \frac{1}{2} \frac{\Delta I_L}{2} T_S$$

Current ripple:
$$\Delta I_L = \left(\frac{V_o}{L}\right) (1 - D) T_S$$

Voltage ripple:
$$\Delta V_o = \frac{\Delta Q}{C} = \frac{V_o}{8LC} T_S^2 (1 - D)$$

$$\frac{\Delta V_o}{V_o} = \frac{\pi^2}{2} \left(1 - D\right) \frac{f_c^2}{f_s^2}$$

Step-up (boost) converter

- DC power supplies
- Regenerative breaking of DC motors

Output voltage always larger than the input

Switch on → diode off, output isolated, L accumulates energy from input

Switch off → diode on, load receives energy from input and from L
Continuous-conduction mode

Periodic conditions:
\[\frac{t_{on} V_d}{L} + \frac{t_{off} (V_d - V_o)}{L} = 0 \]
if \(t_{on} = DT_s \) and
\[t_{off} = (1 - D)T_s \]

\[T_s V_d + T_s (1 - D)V_o = 0 \]

\[\frac{V_o}{V_d} = \frac{1}{1 - D} \]

No losses:
\[V_o I_o = V_d I_d \]

Continuous-discontinuous boundary

Average current in L = ripple:
\[I_{LB} = \frac{V_d t_{on}}{2L} = \frac{V_o (1 - D)T_s D}{2L} \]

Average output current at the limit:
\[I_{oB} = I_{LB} (1 - D) = \frac{V_o T_s (1 - D)^2 D}{2L} \]

\(I_{LB} \) is max if \(D = 0.5 \) \(\rightarrow I_{LBmax} = \frac{V_o T_s}{8L} \)

\(I_{oB} \) is max if \(D = 1/3 \) \(\rightarrow I_{oBmax} = \frac{2V_o T_s}{27L} \) \(\rightarrow I_{oB} = \frac{27}{4} (1 - D)^2 DI_{oBmax} \)
Discontinuous conduction mode
(constant V_o)

Periodic conditions:
\[
\frac{DT_s V_d}{L} + \frac{\Delta_1 T_s (V_d - V_o)}{L} = 0
\]
\[
\frac{V_o}{V_d} = 1 + \frac{L}{\Delta_1} = \frac{I_d}{I_o}
\]

Average current in L
\[
I_d T_s = \frac{DT_s V_d (D + \Delta_1) T_s}{2}
\]

Average output current
\[
I_o = I_d \frac{\Delta_1}{D + \Delta_1} = \frac{T_s V_d}{2L} D \Delta_1
\]
\[
= \frac{27}{4} I_{oB_{\text{max}}} D^2 \frac{V_d}{V_o} \frac{V_o}{V_o - V_d}
\]

\[D = \left[\frac{4}{27} \frac{V_o (V_o - 1)}{V_d} \frac{I_o}{I_{oB_{\text{max}}}} \right]^{\frac{1}{2}}\]

Continuous-discontinuous mode
(constant V_o)

Continuous mode:
\[
I_o > I_{oB}
\]
\[
= I_{oB_{\text{max}}} \frac{27(1 - D)^2 D}{4}
\]
\[
D = 1 - \frac{V_d}{V_o}
\]

Discontinuous mode:
\[
I_o < I_{oB}
\]
\[
D = \left[\frac{4}{27} \frac{V_o (V_o - 1)}{V_d} \frac{I_o}{I_{oB_{\text{max}}}} \right]^{\frac{1}{2}}\]

Figure 7-15 Step-up converter characteristics keeping V_o constant.
Losses and ripple

Losses: inductor, capacitor, switch, diode

Ripple: first order assumption: when the switch is on the C is discharged through the load

\[
\Delta V_o = \frac{\Delta Q}{C} = \frac{I_o D T_S}{C} = \frac{V_o D T_S}{R C}
\]

\[
\frac{\Delta V_o}{V_o} = D \frac{T_S}{\tau}
\]

Buck-boost converter

Negative DC power supply

Switch on: inductance accumulates energy, diode off, C supplies the load

Switch off: diode on, inductance transfers energy to the capacitance and to the load

Periodic conditions in continuous conduction mode:

\[
\frac{D T_S V_d}{L} - \frac{V_o (1 - D) T_S}{L} = 0
\]

\[
\frac{V_o}{V_d} = \frac{D}{1 - D} = \frac{I_d}{I_o}
\]

\[
i_L = I_o + I_d = \frac{I_o}{1 - D}
\]
Continuous-discontinuous boundary

Current in L at the boundary
\[I_{LB} = \frac{D T_s V_d}{2L} \]

Output current at the boundary:
\[I_{oB} = I_{LB} (1 - D) = \frac{T_s V_o}{2L} (1 - D)^2 \]

Discontinuous conduction

Periodic conditions:
\[\frac{D V_d T_s}{L} - \frac{V_o \Delta_1 T_s}{L} = 0 \]
\[\frac{V_o}{V_d} = \frac{D}{\Delta_1} = \frac{I_d}{I_o} \]

Average current in L:
\[I_L T_s = \frac{V_d D T_s (D + \Delta_1) T_s}{L} \frac{2}{2} \]

Therefore:
\[I_L = I_o \left(1 + \frac{D}{\Delta_1}\right) = \frac{V_d T_s}{2L} D (D + \Delta_1) \]
\[\frac{I_o}{I_{oBmax}} = D \Delta_1 \frac{V_d}{V_o} = D^2 \left(\frac{V_d}{V_o}\right)^2 \rightarrow D = \frac{V_o}{V_d} \sqrt{\frac{l_o}{I_{oBmax}}} \]
Continuous-discontinuous mode

Continuous operation
\[I_o > I_{OB} = I_{OBmax} (1 - D)^2 \]
\[D = \frac{V_o}{V_d - V_o} \]

Discontinuous operation
\[I_o > I_{OB} \]
\[D = \frac{V_o}{V_d} \sqrt{\frac{I_o}{I_{OBmax}}} \]

Output voltage ripple

When the switch is ON, C is discharged through the load
\[\Delta V_o = \frac{\Delta Q}{C} = \frac{DT_S V_o}{RC} \Rightarrow \Delta V_o = \frac{\Delta V_o}{V_o} = D \frac{T_S}{\tau} \]
Cuk DC-DC converter

Negative DC power supply
DC analysis: \(V_{C1} = V_d + V_o \) note: \(V_{C1} > V_d \)

Assumption: Large C1 (Voltage almost constant)

Switch OFF: C1 is charged through L1 and the input, Diode ON, L2 supplies energy to R (currents in L1 and L2 decrease)

Switch ON: L1 receives energy, Diode OFF, C supplies current to R, C1 gives energy to L2 (currents in L1 and L2 increase)

![Cuk converter diagram](image)

Figure 7-25 Cuk converter.

Cuk

Periodic conditions in L1
\[
V_d DT_s + (1 - D)T_s (V_d - V_{C1}) = 0
\]
\[
V_{C1} = \frac{V_d}{1 - D}
\]

Periodic conditions in L2
\[
(V_{C1} - V_o)DT_s - V_o (1 - D)T_s = 0
\]
\[
V_{C1} = \frac{V_o}{D}
\]

Therefore
\[
\frac{V_o}{V_d} = \frac{D}{1 - D}
\]

Pro: currents in L1 and L2 ripple free

Con: C1 must be large

![Cuk converter waveforms](image)

Figure 7-26 Cuk converter waveforms: (a) switch off; (b) switch on.
Full bridge DC-DC converter

When switch TA+ is on:
- $i_o > 0$: i_o through TA+
- $i_o < 0$: i_o through DA+
$V_{AN} = V_d \text{dutycycle}(TA^+)$

When switch TB+ is on:
- $i_o < 0$: i_o through TB+
- $i_o > 0$: i_o through DB+
$V_{BN} = V_d \text{dutycycle}(TB^+)$

$$V_o = V_{AN} - V_{BN}$$

Four quadrant operation on V_o, I_o

PWM with bipolar voltage switching

When $v_{control} > v_{tri}$:
- TA+ and TB- are ON
Duty cycle
$$D_1 = \frac{1}{2} + \frac{v_{control}}{\frac{v_{tri}}{2}}$$

When $v_{control} < v_{tri}$:
- TA- and TB+ are ON
$$D_2 = 1 - D_1$$
$$V_o = V_{AN} - V_{BN} = D_1 V_d - D_2 V_d$$
$$= (2D_1 - 1)V_d$$
$$= \frac{V_d}{v_{tri}} v_{control}$$
PWM with unipolar voltage switching

When $v_{\text{control}} > v_{\text{tri}}^{(a)}$, TA+ and TB- are ON

Duty cycle

$$D_1 = \frac{1}{2} + \frac{v_{\text{control}}}{V_{\text{tri}}}$$

When $-v_{\text{control}} < v_{\text{tri}}^{(b)}$, TA- and TB+ are ON

$$D_2 = 1 - D_1$$

$$V_o = V_{AN} - V_{BN} = D_1 V_d - D_2 V_d = (2D_1 - 1)V_d = \frac{V_d}{V_{\text{tri}}} v_{\text{control}}$$

Less ripple w.r.t. the bipolar case because frequency of V_o is double

PWM signal generation

V_o (desired) \rightarrow Amplifier \rightarrow Comparator

V_o (actual) \rightarrow Comparator

\Rightarrow Switch control signal

\Rightarrow Repetitive waveform

\Rightarrow Repetitive waveform
Full Bridge DC-DC Converter

\[T_A^+ \quad T_B^+ \quad T_A^- \quad T_B^- \]

\[V_{AN} + V_{BN} \]

\[i_A \]

\[V_o \]

\[V_{AN} = D_1 V_d \]

\[V_{BN} = D_2 V_d \]

\[V_o = V_{AN} - V_{BN} = (D_1 - D_2) V_d \]

Control: PWM

Bipolar voltage

Unipolar voltage
PWM with bipolar voltage

\[V_{\text{control}} \]

\[V_{\text{tri}} \]

\[V_{\text{max}} \]

\[V_0 \]

\[V_d \]

\[T_A \]

\[T_B \]

\[T_s \]

\[D_1 = \frac{1}{2} + \frac{1}{2} \frac{V_{\text{control}}}{V_{\text{max}}} \]

\[D_2 = (1 - D_1) \]

\[V_0 = (D_1 - D_2) V_d = (2D_1 - 1) V_d = \frac{V_{\text{control}} V_d}{V_{\text{max}}} \]

PWM with unipolar voltage

\[V_{\text{control}} \]

\[V_{\text{max}} \]

\[V_0 = V_{\text{AN}} - V_{\text{BN}} \]

\[V_0 \]

\[V_d \]

\[T_A \]

\[T_B \]

\[T_s \]

\[D_1 = \frac{1}{2} + \frac{1}{2} \frac{V_{\text{control}}}{V_{\text{max}}} \]

\[D_2 = \frac{1}{2} - \frac{1}{2} \frac{V_{\text{control}}}{V_{\text{max}}} \]

\[D_2 = 1 - D_1 \]

\[V_0 = \frac{V_{\text{control}} V_d}{V_{\text{max}}} \]

Variation of \(V_d \) from 0 to \(V_d = -V_d \) (ripple inferior to the bipolar case).