

REGOLATORE SWITCHING

Introduzione Pagina 4

Criteridimerito per un sistema di elethonica di potenza

-) PESO E INGOMBRO

\rightarrow Non utilizzare sistemi in funzionamento lineare

Dispositivi Elettronici di Potenza

- Grado di controllabilità

1) $O N$ dipende dal circuito

OFF dipande dal cirunte \rightarrow DIODI
2) ON segnale on controllo \rightarrow TIRISTORI

OFF diparde dal circuto $\rightarrow\left[\begin{array}{ll}\text { SCR } & \text { Silicon } \\ \text { (19S2) } & \text { Contontud } \\ \text { Redufier }\end{array}\right]$ Redifier
3) ON seguale di controllo

OFF seynale di cantallo \rightarrow INTERRUTIORM $\begin{gathered}\text { CONTRDUABIU }\end{gathered}\binom{$ CNNTR CUED }{ SWITCH }

$$
\left[\begin{array}{lll}
\text { HSFET, BJT, } & \text { GTO } & \text { MCT } \\
(198 T \\
(1982)
\end{array}\right]
$$

Diodi_e_transistori Pagina 7

Apphcazioni tipiche

- DC Power Supply
- pric
- UPS Uninterruptable Power Supply
- Contoollo di processi induatriali
- Trasporth
- Apphcozions par dirtribuzione energie elathina - intecconnessione solare ed eolico
- linee HVDC
- Apphcosioni Termoelettrica

DIODD SENzA PUNCHTHROUGH

- la zarna di sunotamento NON ragriuge la refione n^{+}
- Afphox: tutto ie pot. code nello rojione di deriva.
ω spmore delle zons di sunotamento

$$
\begin{aligned}
& \varepsilon_{\text {max }}=\frac{q N_{D} w}{\varepsilon_{0} \varepsilon_{r}} \leftrightarrow \phi=\frac{1}{2} \frac{q N_{D} w^{2}}{\varepsilon_{0} \varepsilon_{r}} \\
& \phi=\frac{1}{2} \varepsilon_{\text {max }} W \rightarrow V_{B D}=\frac{1}{2} \varepsilon_{B D} W
\end{aligned}
$$

(5i)

$$
\begin{aligned}
& \varepsilon_{B D=}=2 \cdot 10^{5} \mathrm{~V} / \mathrm{cm} \quad \text { Voglio una VBD }=1000 \mathrm{~V} \\
& W=100 \mu \mathrm{~m} \quad d \geqslant 100 \mu \mathrm{~mm} \quad N_{D}=\frac{\varepsilon_{\text {max }} \cdot \varepsilon_{0} \cdot \varepsilon_{r}}{9 \omega}=1310^{-3} \mathrm{~m}
\end{aligned}
$$

DIODO DI POTENZA
epitasiside

- VERTICALE
) REGIONE di deriva (drift region)

Regione di deriva

- ALTÀ RESISTIVITÀ
vtata la Vinversa
\longrightarrow Aumentare la $V_{B D}$ code sulle regone
Effeti
(Break Down)
\rightarrow Aumenta la RoN

CURVATURA della duffusione pt
epitassin n

campo talto in presenza delle rejiom curve

Riduzione della $V_{B D}$

ว) PER RIDURRE solodel 10% la $V_{B D}$ è necessorio

$$
R_{\text {curvature }}>6 \mathrm{~W}
$$

aumenterebbe troppo lo spenore delle regione
\rightarrow siff solo par beoo VBD (<uov) epitorniale
althimenti ELETTRODI FLITTANTIO angul di gurraa

Diodi_e_transistori Pagina 12

DIOAI CON PUNCH THROUGH
-) La rejione dy sunotamento arriva dle zove nt

$$
\phi=\frac{\left(\varepsilon_{\text {max }}+\varepsilon_{2}\right) d}{2}
$$

deriva

$$
\frac{d \varepsilon}{d x}=-\frac{q N_{D}}{\varepsilon_{0} \varepsilon_{*}}
$$

13 caso limite $\left(N_{D \rightarrow 0} \rightarrow \varepsilon_{2} N \varepsilon_{\text {max }}\right) \quad \varepsilon_{\text {max }}-\frac{q N_{D} d}{\varepsilon_{x}}$ $\phi=\varepsilon_{\text {max }} d \rightarrow$ al BrEAK Down $\cdot V_{B D}=\varepsilon_{B D} d$
A PARITA di $d e \varepsilon_{B D}$ abbiamo $V_{B D}=2 x$ il cose precedente

Gestione deul superficie

armenta la lunghaza delle linee di campo e quindr.
riduce il cempo elathic vicins allinterfeccia con llaria.

Diodi_e_transistori Pagina 14

anelli diguardia Gguard rings
riducono la curvatura e quindi l"ffollamento delle linee di campo

Modulazlone della conduttivitá

doppia iniezone in regione dn deriva

$$
\rightarrow p \sim n \sim n_{a} \gg N_{D}^{-}
$$

\rightarrow PLASMA DI CARICHE
IN conduzane Aurmenta houto la conduttivitá dellaniperma

RECAP EFFETTO SPEOSORE REGIONE D DERIVA d

$$
\frac{V_{B D} \propto d}{V_{N N E} V_{d}+V_{j}} \quad V_{d \alpha d d^{2}}
$$

- Vd \sim non depende dal drogojojo par la modulazione delle conduttivita

Caduto di tensione nellereyione di. deiva V_{d}
corrente nella rejione di deniva
Corrente di deriva:

$$
\begin{aligned}
& I=A q \mu_{n} n\left(\frac{v_{d}}{d}\right)+A q \mu_{p} p\left(\frac{v_{d}}{d}\right)= \\
& I=q\left(\mu_{n}+\mu_{p}\right) n_{a}\left(\frac{V d}{d}\right) A \text { NONDPENPE DAM M } \\
& \text { ricombinazuone }\left(\mu_{n}+\mu_{p}\right)_{a}\left(\frac{d}{d}\right)^{A} \leqslant \| \alpha d^{2}
\end{aligned}
$$

tempodi

$$
I=\frac{Q}{\sim \tau}=\frac{q n_{a} d A}{\tau} \Rightarrow \sqrt{V_{d}=\frac{d^{2}}{\tau\left(\mu_{n}+\mu_{p}\right)}}
$$

Accensrone

t_{1} (uns) eliminazazone dolle zone di suvotaniento alta resistivits delle royione di deriva
$t_{2}(\sim \mu \mathrm{~s})$ formazione del pergma riduzione dello senstivito delle rgioned: dake

Diodi_e_transistori Pagina 20

COMMCTAZZTNE (SWITCHING)

Geometria a
Mult. emettitori

- Riduce la rb del transistore
- Riduce ie fenomeno di "CURRENT CROWDiNG"
\rightarrow mitiga ie rischio di FUGA TERMICA
\rightarrow cheda lugg al BREAKDOwN SECONDARLS

Diodi_e_transistori Pagina 22

BJT di Potenza

$$
n^{+} \sim 10^{19} \mathrm{~cm}^{-3}
$$

strutura verticale
9 Altik seazisne di conduziohe
I Bone resatonza serie

- Borse resistemza termina
3 SPESSRE delle bare 5-10Mm' por efortare RNOHTHeovch $\rightarrow \beta_{F}<10$ CREACH Theown

Carattoristiche di usuta

BJT Darlington

$$
{ }_{c}^{1}=\beta_{D^{\prime} d}+\beta_{M}\left(\beta_{p^{+}} 1\right) d b
$$

$\frac{i_{c}}{16}=\beta_{e q}=\left[\beta_{M} \beta_{D}+\beta_{D}+\beta_{M}\right] \sim 100$

dollossids
DA: Perapplicare isco al Mastes (riduce il tempo
D2: diodo di ricircolo

Quasi saturazione

Diodi_e_transistori Pagina 26

Alta imiezione

in alte miezione la concentrazone di elattrohi in beae è cosh alta de cousere l'aumento delli iniesione di launs dol contatto di base \rightarrow eumente lo correnti di lowne $T_{r e}$ bese eethettitore (I_{-3})

Transistorio di accensione

Diodi_e_transistori Pagina 28

Transitorso di accensione

Spegnimento nou controllato conoentrazione di elettroni nelle bose extase

Diodi_e_transistori Pagina 30

SOA Safe Operating Area

U MOSFET

$$
W_{o f f}=W \cdot \underset{\uparrow}{N}
$$

numerodi celle in pocrollelo

Diodi_e_transistori Pagina 34

Coratterstiche di uscita
I_{B}

presejone dir deriva

Diodi_e_transistori Pagina 36

Saturazone delle velocita \rightarrow TRANSCARATERATLA

Transitorio di accensione

Diodi_e_transistori Pagina 38

Tiristore ideale

Forward Blocking
$V_{A K}>0 \quad J_{2}$ suppress $V_{A K}$
Reverse Blocking
$V_{A K}<0 \quad J_{1}$ supports $V_{A K}$

$$
\begin{aligned}
& \alpha_{\text {npr }} \simeq 0.9 \div 1 \\
& \alpha_{\text {pp }} \sim 0.01 \div 0.1
\end{aligned}
$$

-) Two stales.
\rightarrow OFF BITs are in cutoff
\rightarrow ON BUTs are is sat.

Tiristori (Thyristor)
$S C R$ silicon Controlled Rectifier GE 1957

$$
\begin{aligned}
& i_{A}=i_{C_{1}}+i_{c_{2}} \\
& i_{A}=\alpha_{p n p} i_{A}-I_{c_{1}+}+\alpha_{\text {npn }}\left(i_{A}+i_{G}\right)+I_{c_{2}} \\
& i_{A}=\frac{\alpha_{\text {npn }} i_{C}-I_{c_{0} A}+I_{c_{0}}}{1-\left(\alpha_{p n p}+\alpha_{\text {npn }}\right)}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\text { if }\left(\alpha_{p n p}+o_{n p n}\right)<1 \quad \text { ofF } \\
\text { if }\left(\alpha_{p n p^{n}} \alpha_{n p n}\right.
\end{array}\right)=1 \quad \text { बN }
$$

EBERS. MOLL MODEL of the BJT

(npn)
in the active zone:

$$
\begin{aligned}
& \text { - } \begin{array}{l}
I_{E}=-I_{E D}-\alpha_{R} I_{C S} \\
I_{C D}=\alpha_{F} I_{E D}+I_{C S}=-\alpha_{F} I_{E}+\overbrace{C S}\left(1-\alpha_{R} \alpha_{F}\right) \\
I_{C S}
\end{array} I_{C=-\alpha_{F} I_{E}+I_{C D}}
\end{aligned}
$$

ON STATE OPERATION

(k)

$$
V_{A k}>0
$$

potential

Rejione di:
suustamento
o) When $V_{A K}$, the effective base of the pnp shrinks opnp $_{\text {p }} \rightarrow$ ON \uparrow
∂ when $\underline{I G}^{I_{G}}, \alpha_{\text {npn }} \rightarrow \rightarrow$ oN \uparrow

DC charocteristics

$$
\hat{i}_{G}<0
$$

cannot deplete the pand \bar{n} rejions.
Too high voltage dropv.
SCR is twrned off with $V_{A K}<\infty$

Interdugitated cathode

Tiristori Pagina 49

GTO Thyristor

Gate Turnoff
turnoff: $i_{G} \in 0$
$\Delta 1$. Highly interdigitoted structure (1K cell)
2. Cathode islands
3. Anode short

เด91

1891

лоłs!sue»』 леןоd!я әұеэ-рәұеןnsu| 1891

(ч8подчдчэеәл
 ϕ

лəКеן ләниq on
sə!!du! ч8noגчłчวund) рәұәןдәр Кןəұәдшоэ

norkes A! epp $2 y+0$

trose tyys

 dn чгэет э!

dn чวヤеך

Smart Power / Smart Switches (C < 50-100 A, V < 1KV):

Vertical Power devices + Lateral Devices for (some) logic

If Drain of Power MOSFET at positive voltage \rightarrow devices are insulated by the reversed biased p-body - n-drift region junction

Power Integrated Circuits

1. Discrete Modules (Higher I-V range)

2. Smart Power / Smart Switches ($1<50-100$ A, $\mathrm{V}<1 \mathrm{KV}$):
3. High-Voltage Integrated Circuits (e.g. BCD process - I < 50-100 A, V < 1KV)
4. High-density Power Management IC (e.g. high density BCD process - V < 100 V)

STM BCD Process

STM BCD Process

Three process technologies on a single chip

- Bipolar for precise analog circuits (e.g. bandgap)
- CMOS for digital design
- DMOS for power and high voltage

Pros:

- Improved reliability (no bonding, no complex packaging)
- Reduced EMI
- Smaller chip area (improved integration)

Cons

- No component is optimized (e.g. digital is not optimized (long channel lengths and thick oxides))

STM BCD process family

Chronology of BCD Processes

Chronology of BCD process taken from Fig. 4.4 of Y. Fu et al. CRC Press, 2014

Capabilities of power devices

The domain of MOSFETs and IGBTs is increasing

Infineon 130 nm BCD

Evolution of power semiconductor devices

Active devices are a large fraction of the total system cost \rightarrow actual design try to minimize the number of active devices used and their maximum ratings (cost)

Progress in IGBTs Courtesy of Infineon 2011

Development of power density for IGBTs*

Evolution of power semiconductor

devices

Active devices are a large fraction of the total system cost \rightarrow actual design try to minimize the number of active devices used and their maximum ratings (cost)
Progress in Power devices DRIVE changes in circuit choices and market adoption.
Examples:

- power MOSFETs —> switched-mode power supplies
- IGBT -> Energy efficient motor drives with inverters Next

New materials: SiC, GaN -> Class D audio amplifier, inverter for motion control - AC-DC and DC-DC power supply

Evolution of power semiconductor

devices

Active devices are a large fraction of the total system cost \rightarrow actual design try to minimize the number of active devices used and their maximum ratings (cost)
Progress in Power devices DRIVE changes in circuit choices and market adoption.

Examples:

- power MOSFETs \rightarrow switched-mode power supplies
- IGBT -> Energy efficient motor drives with inverters

Resistance in the ON state \mathbf{R}_{ON}

if we put the breakdown field $E_{B D}$ in the place of E, and the breakdown voltage $V_{B D}$ in the place of V :

- $2 V_{B D}=W E_{B D} \rightarrow W=\frac{2 V_{B D}}{E_{B D}}$
- $2 V_{B D} \frac{q N_{D}}{\epsilon}=E_{B D}^{2} \rightarrow q N_{D}=\frac{\epsilon E_{B D}^{2}}{2 V_{B D}}$
R_{ON} is due to transport in the drift region. In the case of no conductivity modulation $n=N_{D}$ (MOSFETs and Schottky diodes):

$$
R_{O N}=\frac{W}{A} \frac{1}{q \mu n}=\frac{W}{A} \frac{1}{q \mu\left(N_{D}\right.}
$$

Comparison between different materials for power FETs

Let us consider a PN junction with NO punchthrough:

- W is the width of the depletion region (contained in the drift region)
- Electric field at the junction:

$$
E=\frac{q N_{D}}{\varepsilon} W
$$

- Voltage drop V in W:

$$
V=\frac{1}{2} \frac{q N_{D}}{\varepsilon} W^{2}=\frac{W E}{2}
$$

- We also have $2 V \frac{q N_{D}}{\epsilon}=E^{2}$

Thermal properties of alternative semiconductors

	Si	GaAs	SiC	GaN
Bandgap at Room T (eV)	1.12	1.43	$2.2-3$	3.4
Thermal conductivity (W/(cm K))	1.5	0.5	5	1.3
Max Operating Temp. (C)	150	300	$600-1000$	400
Saturation velocity (cm/s)	1 e 7	2 e 7	2.5 e 7	2.5 e 7

Higher bandgap \rightarrow Harder impact ionization \rightarrow Higher E_{BD}
Higher bandgap \rightarrow Lower intrinsic carrier density n_{i} at a given T
\rightarrow Lower leakage currents at given T
\rightarrow Higher Max operating Temp

FOM of alternative materials (to Si)

$$
R_{O N} A=\frac{4}{\mu \varepsilon} \frac{V_{B D}^{2}}{E_{B D}^{3}}
$$

The breakdown voltage is a system specification
\rightarrow For the same $V_{B D}$, different materials give different $R_{O N}$

Baliga proposed a Figure of Merit for materials normalized to Si :

$$
F O M=\mu \varepsilon E_{B D}^{3}
$$

	Si	GaAs	SiC	GaN
Breakdown Electric Field (MV/cm)	0.3	0.4	2.4	3.0
Electron mobility $\left(\mathrm{cm}^{2} / \mathbf{/}\right.$ s) at $\mathbf{3 0 0 K}$	1350	8500	370	900
Relative dielectric constant	11.8	13.1	10	9.5
BFOM $=\mathbf{1}\left(\boldsymbol{\mu \varepsilon E _ { \text { BD } })}\right.$ normalized to Si	1	17	119	537

SiC devices

- SiC diodes, SiC JFETs, SiC MOSFETs
- SiC JFET (Infineon)

Superjunction MOSFET

P-pillar introduces a charge sharing mechanism that enables to increase drift region doping (10x) for the same $V_{B D}$ and drift region thickness
For $\mathrm{V}_{\mathrm{BD}}=600 \mathrm{~V} \rightarrow 5 \mathrm{x}$ reduction in R_{ON} wrt MOSFET

Comparison between different technologies

Superjunction SiC JFET

GaN HEMT

n-Epitaxy

c)

Metal/Poly-Si
\square AIN/AIGaN Barrier

- Si Substrate

Buffer layer

GaN-AIGaN MIS-HEMT

- No pn junctions (only majority carriers)
- Lateral device (reduced capacitances, high fields in the upper layers)
- Normally ON

D Infineon 2011

R_{ON} comparison

GaN also has lower output switching charge, enabling higher frequency

Problems of alternative materials

1. Silicon has enormous accumulated past investments. Money spent on other materials is small in comparison
2. GaAs

- Small wafer size (\rightarrow higher cost)
- Unwanted impurities \rightarrow reduce EBD and carrier lifetime
- No oxide (is it really a problem?)

3. SiC

- Even smaller wafer size and more impurities
$-\mathrm{SiC}-\mathrm{SiO}_{2}$ interface not perfect

4. GaN

- Reliability issues (impurities)

Ideal limit of SiC and GaN have not been reached yet

Fig. 12 of Ikeda et al. Proc. IEEE Vol. 98, pp. 1151-1161, 2010.

DC-DC Converters

Typical uses:

- DC Power supplies
- DC Motor drives
- Portable Electronics

Figure 7-1 A dc-dc converter system.

Added value of SiC and GaN

Step-down (buck) converter

DC power supplies, DC motor drives -- $\mathrm{V}_{\mathrm{o}}<\mathrm{V}_{\mathrm{d}}$
Low-pass filter keeps output voltage constant
Note: $2^{\text {nd }}$ order non dissipative filter

$$
f_{c}=\frac{1}{2 \pi} \frac{1}{\sqrt{L C}} \ll f_{s}
$$

Diode avoids voltage spike on switch (when switch is off, diode provides current to L)

Ideal concept of step-down

 converter with PWM* switching

(b) $\quad V_{0}=V_{d} \frac{t_{o n}}{T_{s}}$

Figure 7-2 Switch-mode dc-dc conversion.
Assumptions: Switches, L, C are lossless, DC input has zero internal impedance, load is an equivalent R
This cannot work: 1. Load is inductive and can destroy switch by dissipating all stored energy, 2. output voltage must be continuous

Limit of continuous conduction

If the ripple amplitude $I_{L B} \equiv \frac{I_{p e a k}}{2}=I_{o}$, the converter is at the limit of continuous conduction (i.e. $\min \left\{I_{L}\right\}=0$)
$I_{L B} \equiv \frac{I_{\text {peak }}}{2}=\frac{t_{\text {on }}\left(V_{d}-V_{o}\right)}{2 L}=\frac{D T_{s} V_{d}(1-D)}{2 L}=I_{L B \max } 4 D(1-D)$

(a)

(b)

Figure 7-6 Current at the boundary of continuous-discontinuous conduction: (a) current waveform; (b) $I_{L B}$ versus D keeping V_{d} constant.

Continuous-conduction mode

Current in L is always >0

- $t_{\mathrm{on}}: \frac{d I}{d t}=\frac{V_{d}-V_{o}}{L}$
- $t_{\text {off }}: \frac{d I}{d t}=-\frac{V_{o}}{L}$

At steady state: $I\left(t+T_{s}\right)=I(t)$.
Therefore
$\frac{V_{d}-V_{o}}{L} t_{\text {on }}-\frac{V_{0}}{L} t_{\text {off }}=0$
$\frac{V_{o}}{V_{d}}=\frac{t_{o n}}{T_{s}}=D$

Discontinuous-conduction mode with constant $\mathrm{V}_{\mathrm{d}}=$ Motor drives

Figure 7-7 Discontinuous conduction in step-down converter.

$$
I_{o}=4 I_{\mathrm{LBmax}} D \Delta_{1} \longrightarrow \frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+I_{o} /\left(4 I_{L B \max }\right)}
$$

Limits of continuous-discontinuous conduction (constant V_{d})

Figure 7-8 Step-down converter characteristics keeping V_{d} constant.

Discontinuous-conduction with constant Vo

At the limit of continuous conduction

$$
I_{L B}=\frac{V_{o} T_{S}(1-D)}{2 L}=I_{\text {LBmax }}(1-D)
$$

We can write D explicitly from:
$I_{\text {peak }}=\frac{V_{o} \Delta_{1} T_{S}}{L}=2 I_{\text {LBmax }} \Delta_{1}$
$I_{o}=\frac{I_{\mathrm{peak}}\left(D+\Delta_{1}\right)}{2}=I_{\mathrm{LBmax}} \Delta_{1}\left(D+\Delta_{1}\right) \quad \frac{V_{d}}{V_{o}}=\frac{D+\Delta_{1}}{D}$
$\frac{I_{o}}{I_{\text {LBmax }}}=D^{2} \frac{V_{d}}{V_{o}}\left(1-\frac{V_{d}}{V_{o}}\right) \square D=\left[\frac{V_{o}}{V_{d}} \frac{I_{o}}{I_{L B \max }}\left(1-\frac{V_{d}}{V_{o}}\right)^{-1}\right]^{\frac{1}{2}}$

Limits of continuous-discontinuous conduction (constant Vd)

$\frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+\frac{I_{o}}{4 I_{\text {LBmax }}}}$

Output voltage ripple

First order calculation:
The average iL flows in the load, and the ripple component in C .

Additional charge:

$$
\Delta Q=\frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T_{S}}{2}
$$

Current ripple:

$$
\Delta I_{L}=\left(V_{o} / L\right)(1-D) T_{S}
$$

Voltage ripple:

$$
\begin{array}{rlr}
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{V_{o}}{8 L C} T_{s}^{2}(1-D) & \frac{\Delta V_{o}}{V_{o}}=\frac{\pi^{2}}{2}(1-D) \frac{f_{c}^{2}}{f_{s}^{2}} \\
f_{c}=\frac{1}{2 \pi} \frac{1}{\sqrt{L C}} &
\end{array}
$$

Discontinuous-conduction with constant Vo

Continuous: $I_{o}>I_{L B}$
$D>1-\frac{I_{o}}{I_{L B \max }}$
$D=\frac{V_{o}}{V_{d}}$
Discontinuous: $I_{o}<I_{L B}$

$$
D<1-\frac{I_{o}}{I_{L B \max }}
$$

$$
D=\left[\frac{V_{o}}{V_{d}} \frac{I_{o}}{L_{L B \max }}\left(1-\frac{V_{d}}{V_{o}}\right)^{-1}\right]^{\frac{1}{2}}
$$

Figure 7-9 Step-down converter characteristics keeping V_{o} constant.

Continuous-conduction mode

Periodic conditions:

$$
\frac{t_{\mathrm{on}} V_{d}}{L}+\frac{t_{\mathrm{off}}\left(V_{d}-V_{o}\right)}{L}=0
$$

if $t_{\mathrm{on}}=D T_{s}$ and

$$
t_{\mathrm{off}}=(1-D) T_{s}
$$

$T_{s} V_{d}+T_{s}(1-D) V_{o}=0$
$\frac{V_{o}}{V_{d}}=\frac{1}{1-D}$
No losses:
$V_{o} I_{o}=V_{d} I_{d}$

(b)

Step-up (boost) converter

- DC power supplies
- Regenerative breaking of DC motors

Output voltage always larger than the input

Switch on \rightarrow diode off, output
 isolated, L accumulates energy from input
Switch off \rightarrow diode on, load receives energy from input and from L

Discontinuous conduction mode (constant V_{0})

Periodic conditions:

$$
\frac{D T_{s} V_{d}}{L}+\frac{\Delta_{1} T_{s}\left(V_{d}-V_{o}\right)}{L}=0
$$

Continuous-discontinuous boundary

Average current in L

= ripple :

$$
\begin{aligned}
& I_{L B}=\frac{V_{d} t_{o n}}{2 L} \\
& =\frac{V_{o}(1-D) T_{s} D}{2 L}
\end{aligned}
$$

Average output

 current at the limit:$$
\begin{aligned}
& I_{O B}=I_{L B}(1-D) \\
& =\frac{V_{o} T_{S}(1-D)^{2} D}{2 L}
\end{aligned}
$$

$I_{L B}$ is max if $\mathrm{D}=0.5 \rightarrow I_{L B \max }=\frac{V_{o} T_{S}}{8 L}$,
$I_{o B}$ is max if $\mathrm{D}=1 / 3 \rightarrow I_{O B \max }=\frac{2 V_{o} T_{S}}{27 L} \rightarrow I_{O B}=\frac{27}{4}(1-D)^{2} D I_{O B \max }$

Discontinuous conduction mode (constant V_{0})

Periodic conditions:

$$
\begin{gathered}
\frac{D T_{s} V_{d}}{L}+\frac{\Delta_{1} T_{s}\left(V_{d}-V_{o}\right)}{L}=0 \\
\frac{V_{o}}{V_{d}}=1+\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}
\end{gathered}
$$

Average current in L

$$
I_{d} T_{s}=\frac{D T_{s} V_{d}}{L} \frac{\left(D+\Delta_{1}\right) T_{s}}{2}
$$

Average output current

$$
\begin{aligned}
& I_{o}=I_{d} \frac{\Delta_{1}}{D+\Delta_{1}}=\frac{T_{s} V_{d}}{2 L} D \Delta_{1} \\
& =\frac{27}{4} I_{o B \max } \frac{V_{d}}{V_{o}} D^{2} \frac{V_{d}}{V_{o}-V_{d}}
\end{aligned} \quad D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B \max }}\right]^{\frac{1}{2}}
$$

Discontinuous conduction mode (constant V_{o})

Periodic conditions:

$$
\begin{gathered}
\frac{D T_{s} V_{d}}{L}+\frac{\Delta_{1} T_{s}\left(V_{d}-V_{o}\right)}{L}=0 \frac{\text { tions } \left.=V_{\mathbf{o}}\right)}{\frac{V_{0}}{V_{d}}=1+\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}}=\mathbf{O} \frac{\boldsymbol{D}}{\mathbf{\Delta}_{\mathbf{1}}}=\frac{\boldsymbol{I}_{\mathbf{a}}}{\boldsymbol{I}_{\mathbf{o}}}
\end{gathered}
$$

Losses and ripple

Losses: inductor, capacitor, switch, diode
Ripple: first order assumption: when the switch is on the C is discharged through the load

$$
\begin{gathered}
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{I_{o} D T_{S}}{C}=\frac{V_{o} D T_{S}}{R C} \\
\frac{\Delta V_{o}}{V_{o}}=D \frac{T_{S}}{\tau}
\end{gathered}
$$

Continuous-discontinuous mode (constant V_{o})

Continuous mode:

$$
\begin{aligned}
& I_{o}>I_{o B} \\
& =I_{o B \max } \frac{27(1-D)^{2} D}{4} \\
D & =1-\frac{V_{d}}{V_{o}}
\end{aligned}
$$

Discontinuous mode:

$$
\begin{gathered}
I_{o}<I_{o B} \\
D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B \max }}\right]^{\frac{1}{2}}
\end{gathered}
$$

Figure 7-15 Step-up converter characteristics keeping V_{o} constant.

Continuous-discontinuous boundary

Current in L at the boundary

$$
I_{L B}=\frac{D T_{s} V_{d}}{2 L}
$$

$$
I_{L B}=I_{L B \max }(1-D)
$$

Output current at the boundary:

(a)

$$
I_{O B}=I_{O B \max }(1-D)^{2}
$$

(b)

Buck-boost converter

Negative DC power supply
Switch on: inductance
accumulates energy, diode off, C supplies the load
Switch off: diode on,
inductance transfers energy to the capacitance and to the load

Periodic conditions in continuous conduction mode:

$$
\frac{D T_{s} V_{d}}{L}-\frac{V_{o}(1-D) T_{s}}{L}=0
$$

$$
\begin{aligned}
& \frac{V_{o}}{V_{d}}=\frac{D}{1-D}=\frac{I_{d}}{I_{o}} \\
& I_{L}=I_{o}+I_{d}=\frac{I_{o}}{1-D}
\end{aligned}
$$

Continuous-discontinuous mode

Continuous operation

Figure 7-22 Buck-boost converter characteristics keeping V_{o} constant.

Discontinuous conduction

Periodic conditions:

$$
\begin{gathered}
\frac{D V_{d} T_{s}}{L}-\frac{V_{o} \Delta_{1} T_{s}}{L}=0 \\
\frac{V_{o}}{V_{d}}=\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}
\end{gathered}
$$

Average current in L:

$$
I_{L} T_{S}=\frac{V_{d} D T_{S}}{L} \frac{\left(D+\Delta_{1}\right) T_{S}}{2}
$$

Therefore:

Figure 7-21 Buck-boost converter waveforms in a discontinuous-conduction mode.

$$
\begin{aligned}
& I_{L}=I_{o}\left(1+\frac{D}{\Delta_{1}}\right)=\frac{V_{d} T_{S}}{2 L} D\left(D+\Delta_{1}\right) \\
& \\
& \qquad \frac{I_{o}}{I_{o B \max }}=D \Delta_{1} \frac{V_{d}}{V_{o}}=D^{2}\left(\frac{V_{d}}{V_{o}}\right)^{2} \rightarrow D=\frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{o B \max }}}
\end{aligned}
$$

Cuk DC-DC converter

Negative DC power supply
DC analysis: $V_{C 1}=V_{d}+V_{o}$ note: $\left(V_{C 1}>V_{d}\right)$
Assumption: Large C1 (Voltage almost constant)

Figure 7-25 Cúk converter.

Output voltage ripple

When the switch is ON, C is discharged through the load

$$
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{D T_{s} V_{o}}{R C} \rightarrow \frac{\Delta V_{o}}{V_{o}}=D \frac{T_{s}}{\tau}
$$

Cuk DC-DC converter

Negative DC power supply

DC analysis: $V_{C 1}=V_{d}+V_{o}$ note: $\left(V_{C 1}>V_{d}\right)$
Assumption: Large C1 (Voltage almost constant)
Switch OFF: C1 is charged through L1 and the input, Diode ON, L2 supplies energy to R (currents in L1 and L2 decrease)
Switch ON: L1 receives energy, Diode OFF, C supplies current to R, C1 gives energy to L2 (currents in L1 and L2 increase)

Figure 7-25 Cúk converter.

Cuk DC-DC converter

Negative DC power supply

DC analysis: $V_{C 1}=V_{d}+V_{o}$ note: $\left(V_{C 1}>V_{d}\right)$
Assumption: Large C1 (Voltage almost constant)
Switch OFF: C1 is charged through L1 and the input, Diode ON, L2 supplies energy to R (currents in L1 and L2 decrease)

Figure 7-25 Cúk converter.

Full bridge DC-DC converter

Applications:

- DC motor drives
- DC to AC conversion in UPS
- DC to AC conversion in transformer isolated power supply Fixed V_{d}.
Control polarity and amplitude of Vo

Figure 7-27 Full-bridge dc-dc converter.

Two legs: A and B. Only one switch in each leg is ON at any time

Cuk

Periodic conditions in L1

$V_{d} D T_{s}+(1-D) T_{s}\left(V_{d}-V_{C 1}\right)=0$
$V_{C 1}=\frac{V_{d}}{1-D}$

Periodic conditions in L2

$\left(V_{C 1}-V_{o}\right) D T_{s}-V_{\mathrm{o}}(1-\mathrm{D}) T_{s}=0$
$V_{C 1}=\frac{V_{o}}{D}$
Therefore
$\frac{V_{o}}{V_{d}}=\frac{D}{1-D}$
Pro: currents
in L1 and L2 ripple free
Con: C1 must be large

Figure 7-26 Cúk converter waveforms: (a) switch off; (b) switch on.

PWM with bipolar

When $v_{\text {control }}>v_{\text {tri }}$,
TA+ and TB- are ON
Duty cycle

$$
D_{1}=\frac{1}{2}+\frac{v_{\text {control }}}{\widehat{V_{\text {tri }}}} \frac{1}{2}
$$

Full bridge DC-DC converter

When switch TA+ is on:

$i_{o}>0: i_{o}$ through TA+ $i_{o}<0: i_{o}$ through DA+ $V_{A N}=V_{d} \operatorname{dutycycle}\left(T A^{+}\right)$

When switch TB+ is on:

 $i_{o}<0: i_{o}$ through TB+ $i_{o}>0: i_{o}$ through DB+ $V_{B N}=V_{d}$ dutycycle $\left(T B^{+}\right)$

Figure 7-27 Full-bridge dc-dc converter.

$$
V_{o}=V_{A N}-V_{B N}
$$

Four quadrant operation on V_{o}, I_{o}

PWM signal generation

(a)

(switching frequency $f_{s}=\frac{1}{T_{s}}$)

PWM with unipolar

voltage switching
When $v_{\text {control }}>v_{\text {tri }}{ }^{(a)}$
TA+ and TB- are ON
Duty cycle

$$
D_{1}=\frac{1}{2}+\frac{v_{\text {control }}}{\widehat{V_{\text {tri }}}} \frac{1}{2}
$$

When $-v_{\text {control }}<v_{\text {tri }}$, TA- and TB+ are ON
$D_{2}=1-D_{1}$
$V_{o}=V_{A N}-V_{B N}$
$=D_{1} V_{d}-D_{2} V_{d}$
$=\left(2 D_{1}-1\right) V_{d}$
$=\frac{V_{d}}{\widehat{V_{\text {tri }}}} v_{\text {control }}$
(d)

On-state:
$\begin{array}{lll}\text { tate: } & \left(T_{A+}, T_{B-}\right)\left(T_{A+}, T_{B-}\right) \uparrow\left(T_{A+}, T_{B}\right. \\ & \left(T_{A-}, T_{B-}\right) & \left(T_{A+}, T_{B+}\right)\end{array}$
Less ripple
w.r.t. the
bipolar case

Pule Bridge DC DC Convertor
$(4 Q)$

$$
\begin{aligned}
& \left\langle V_{A N}\right\rangle=D_{A} V_{d} \\
& \left.\left\langle V_{B N}\right\rangle=D_{B} V_{d}\right\rangle\left\langle V_{A B}\right\rangle=\left\langle V_{A N}\right\rangle-\left\langle V_{B N}\right\rangle=\left(D_{A}-D_{B}\right) V_{d}
\end{aligned}
$$

PWM with unip-lar oltage T_{A}^{t} on if

 σ pion pogle de piethou

PWM with Bipolar voltaje

Limits
\rightarrow SSL Slow switching limit [lowfs] $D C$'s reach their finol charge state during each phafe \rightarrow we can discard power diseripata in. R_{s}
\rightarrow FSL Fast switching limit [high fo]
\rightarrow C's dearge does ut duange during each phate.

Convertitori Pagina 58

Convertitor. $D C D C$ inductorless Esempio - LAADER 3:1

- charge multiphier vectors
phafe 1) $\quad \vec{a}^{(1)}=\left[\begin{array}{lllll}(1) & a_{a 0 t}^{(1)} & a_{c_{n}}^{(1)} & \cdots & a_{c N}^{(1)} \\ a_{i n}^{(1)} \\ & a_{i n} & & & \end{array}\right]$
frazione della carica che viruse fornita in ruscte par asoun priodo
per badder $3: 1$

$$
\begin{aligned}
& \vec{a}^{(1)}=\left[\begin{array}{lllll}
\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3}
\end{array}\right] \\
& \vec{a}^{(2)}=\left[\begin{array}{lllll}
\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & 0
\end{array}\right]
\end{aligned}
$$

Convertitori Pagina 60

$$
\begin{aligned}
& V_{0}=\frac{E}{R} C^{+} V \\
& i(t)=\frac{V_{0}}{R} e^{-\frac{t}{R C}} \quad=\frac{1}{2} C V_{0}^{2} \\
& \int_{0}^{\infty} V_{0} i(t) d t=\frac{V_{0}^{2} R C=c V_{0}^{2}}{R} \\
& \int_{0}^{\infty} R i^{2}(t) d t=\frac{V_{0}^{2}}{R} \int_{0}^{\infty} e^{-\frac{t}{R C}} d t=\frac{V_{0}^{2}}{R} \frac{R C}{2}=\frac{1}{2} c V_{0}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta V_{\text {out }}=V_{\text {out }}^{11 \text { aar } 2015}-V_{\text {out }}{ }^{1529}=-\sum_{i \in L_{0}}^{\sum_{i}\left[V_{c i}^{(1)}-V_{c i}^{(2)}\right]} \underbrace{}_{c_{c i}} \\
& \frac{\text { ouci }_{i} \text { gout }^{c_{i}}}{}
\end{aligned}
$$

Teorema di Tellegen

$$
\begin{gathered}
\sum v_{i} l_{i}=0 \\
v_{o u t} i_{o u t}+\sum_{i \in u p} v_{c_{i}} i_{c_{i}}+v_{i n} i_{i n}=0
\end{gathered}
$$

phase 1. $\quad v_{\text {out }} a_{\text {out }}^{(a)}+\sum_{i \in \text { cop }} v_{c}^{(a)} a_{c i}^{(a)}+v_{i n} a_{i n}^{(1)}=0$
phase $2 v_{00}+a_{a t}^{(2)}+\sum_{1} v_{c i}^{(2)} a_{c i}^{(2)}+v_{\text {in }} a_{\text {in }}^{(2)}=0 \quad$ phose $1+$ phese $2, ~-v_{\text {out }}^{0}$
(2) iscap sum: phose $1+$ phase $2,_{\prime}^{\prime}$

NB. $a_{00 t}^{(1)}+a_{a t}^{(2)}=1$

$$
a_{c_{i}}^{(1)}=-d_{c_{1}}^{(2)}=a_{c_{i}}
$$

$$
\| v_{i \in \operatorname{cop}} v_{c i}\left[v_{c_{i}}^{(1)}-v_{c i}^{(2)}\right]+v_{i n}\left[\begin{array}{c}
(1) \\
a_{i n}+a_{i n} \\
\\
=0
\end{array}\right.
$$

FSL
R_{i} resiztance of Switch S_{i}

- clarge multiplier vector

$$
\begin{aligned}
& \vec{a}_{S}^{(1)}=\left[\begin{array}{llllll}
s_{1} & s_{2} & \delta_{3} & s_{4} & \delta_{S} & \delta_{6} \\
3 & 0 & \frac{1}{3} & 0 & -\frac{2}{3} & 0
\end{array}\right] \\
& {\overrightarrow{a_{s}}}^{(n)}=\left[\begin{array}{llllll}
0 & 1 & 0 & \frac{1}{3} & 0 & -\frac{2}{3}
\end{array}\right]
\end{aligned}
$$

switch $i_{s i}^{(a)}=2 a_{s i}^{(a)} \overbrace{\text { pout }}^{\text {Tont }} \in \underset{\text { average }}{ }$ crrrent
$s_{i} \quad i_{s, i}=2 a_{s, i}$ qut $f_{s} \in{ }^{\text {in }} S_{S_{i}}$ during

$$
P_{F S L}=\sum_{i \in \text { Suitch }} R_{i} i_{s, i}^{2}=\underbrace{\sum_{R_{\text {out }}} 4 R_{i} a_{S_{i}}^{2} I_{\text {out }}^{2 \text { phos }}}_{i \in \text { suitan }}
$$

Raggungasibilita. Controllahilita. Oservabilità
\rightarrow di mu sisteman lineare e etazionario

$$
T C:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D \mu(t)
\end{array}\right.
$$

$\vec{u}: m$ ingressi
$\vec{x}: r$ stati
$\vec{y} \cdot \ell$ uscite
TD: $\left\{\begin{array}{l}x(k+1) \cdot A x(k)+B_{n 1}(k) \\ y(k) \cdot C x(k)\lrcorner D \mu(k)\end{array}\right.$

Controllabielta
DEF un sistema - Controllabile se a partion de un qualunque stato x esiste ume opporture azione di controllo in grad di portere il sistema nollo stato x_{0}

Raggiungibilita
DEF Un sistema é PAGGANGGBLLE se partendo do len qualungue stoto miziole x_{0} si prò regpivunge un quolungue edoto finde x consua opporture azione di contualle

il sistema è RAGGIUNGABILE se Rank (R) $=W$
\rightarrow ognistoto phio enere reggounto in n pess.
Se Rank $[R]<n$ sowo ragyiongibiRi solo ghi
sitcti G I mage $\{R\}$
[PARZIALMENTE RAGGGIUNGLBILE]

Condizioni di rayjungibilita

$$
\begin{aligned}
& x(0)=x_{0} \\
& x(1)=A x(0)+B \mu(0)=A x_{0}+B \mu(0) \\
& x(2)=A x(1)+B \mu(1)=A^{2} x_{0}+A B \mu(0)+B \mu(1) \\
& x(3)=A x(2)+B \mu(2)=A^{3} x_{0}+A^{2} B \mu(0)+A B \mu(1)+B \mu(2)
\end{aligned}
$$

Se $k=n$

$$
x(k)=A^{k} x_{0}+\sum_{i=1}^{k} A^{k-i} B \mu(i-1)
$$

ie sistema - ragauns ible

Osservabilità
DEF un sistema è OSSERVABILE se - conosceuds $\mu(t) d a t=t o$ a $t=t_{f}$ conoscends $y(t)$ da toto a $b=t f$ sians in grodo an ricavare lo stato inuziale $x\left(t_{0}\right)$

Controllabilità

$$
\begin{aligned}
& \begin{array}{c}
\left.\left[x(n)-A^{n} x_{(0}\right)\right]=Q\left[\begin{array}{c}
\mu(n-1) \\
\vdots \\
\mu(0)=x \leftarrow \text { gentrin }
\end{array}\right] .
\end{array} \\
& \overbrace{x_{0}} \int_{\int}^{x(0)=x} \\
& x(n)=x_{0}<\text { origive } \\
& x_{0}-A^{n} x=R\left[\begin{array}{c}
\mu(n-1) \\
\vdots \\
\mu(0)
\end{array}\right]
\end{aligned}
$$

le soluzione eriste se $\mathrm{Im}_{\mathrm{mage}}(A) \subset$ Image (R) $[i e$ sistome è controlloblese λ
$2 d \operatorname{det}(M) \neq 0$ Regrangiblatic CR Contollobilitía coin cidons \rightarrow SE un sistoune a Rograyible ellore è ance contululabie

Le $\operatorname{Rank}(\theta)=n$ if sisteman is
[CompleTamente] Oservabile
(ba sclusione ì mina)
\& $\operatorname{Rank}(g)<n$ if sisterva is
Parzallente ossermaille
$\left[\begin{array}{c}\text { glistatii } \epsilon \operatorname{Ken}(9) \\ \text { Sons ossorv abili }\end{array}\right]$

$$
\theta(\tilde{x})=O\left(\tilde{x}-x_{n_{0}}\right)
$$

$$
\begin{aligned}
& \begin{cases}x(k+i)=A x(k)+B u(k) \\
y(k)= & C x(k)+\operatorname{Du}(k)\end{cases} \\
& y(0)=C x(0)+D \mu(0) \\
& y(1)=C x(1)+D \mu(1)=C A x(0)+C B \mu(0)+D \mu(1) \\
& y(2)=C x(2)+\operatorname{Du}(2)=C A x(1)+C B u(1)+D \mu(2) \\
& =C^{2} \times(0)+C_{A B u}(0)+\operatorname{CBr}^{2}(3)+\operatorname{Du}(2)
\end{aligned}
$$

Forma standard di ragju ungibilita

$$
\begin{aligned}
& x=T x^{\prime} \\
& x^{\prime}\left\{\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right\} \leqslant \begin{array}{r}
x \\
x_{1} r
\end{array} \\
& \text { (Image (R) } \\
& \left\{\begin{array}{l}
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{l}
A_{11} \vdots A_{12} \\
A_{21} \vdots \\
A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=\left[\begin{array}{c}
B_{1} \\
\cdots \\
B_{2}
\end{array}\right] \mu(k)} \\
y(k)=\left[\begin{array}{ll}
C_{1} \vdots & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=D \mu(k) 0
\end{array}\right. \\
& \text { gen. atati } x_{2}(n, r) \text { evolvoluo liberamate a non dypend no da } x
\end{aligned}
$$

Cambios di bose degeli statio

$$
\begin{aligned}
& \frac{F}{x}=T^{7} \quad x^{\prime}=T^{-1} x \\
& x^{-1}\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+B \mu(k)
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{\prime}(k+1)=T^{-1} A T x^{\prime}(k)+T^{-1} B \mu(k) \\
y(k)=C T x^{\prime}(k)+D_{\mu}(k)
\end{array}\right. \\
& A^{\prime}=T^{-1} A T \\
& B^{\prime}=\top^{-1} B \\
& \left\{\begin{array}{l}
x^{\prime}(k+1)=x^{\prime} x^{\prime}(k)+B^{\prime} \mu(k) \\
y(k)=C^{\prime} x^{\prime}(k)+D \mu(k)
\end{array}\right. \\
& C^{\prime}=C T \\
& D^{\prime}=D
\end{aligned}
$$

CCo atesso sisteme bopoil cambiamento dilarese deye stati

Forma cononica di Kalman

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
0 & A_{22} & 0 & A_{24} \\
0 & 0 & A_{33} & A_{34} \\
0 & 0 & 0 & A_{44}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
\hdashline B_{2} \\
\hdashline 0 \\
\hdashline \\
0
\end{array}\right] \mu(k)} \\
& y(k)=\left[0: C_{2}: 0: C_{4}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(E) \\
x_{3}(k) \\
x_{d}(E)
\end{array}\right]+D \mu(k)
\end{aligned}
$$

Forma standard di osservabilitia

$$
\begin{aligned}
& x^{\prime}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{c:c}
A_{11} & \vdots A_{12} \\
\hdashline A_{21}! & A_{22}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=\left[\begin{array}{c}
B_{1} \\
\cdots \\
B_{2}
\end{array}\right] \mu(k)} \\
& y(k)=\left[\begin{array}{c}
c_{1}: C_{2} \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+D \mu(k)
\end{aligned}
$$

Controllore PID

$$
\left.C(s)=\begin{array}{cc}
K_{p}+\frac{K_{i}}{s}+K_{d} s & =K_{p}\left[1+\frac{d}{s \tau_{i}}+\tau_{d} s\right. \\
\uparrow & \uparrow \\
i & D
\end{array}\right]
$$

NELA
$|C(j \omega)| / B$

Contralori PID + derivativo
Pproporzonale lintegrativo

$e(t)=r(t)-y(t)$ errore
$E(s)=R(s)-Y(s)$

$$
Y(s)=P C E(s)
$$

OBUETINI
Flefore
3) minimizzare $\left.|e|, \mid e^{2}\right\}, \cdots$

$$
y=P C(R-y)
$$

$$
\begin{aligned}
& (1+P C) y=P C R \\
& y=\left[\frac{P C}{1+P C}\right] R E=\frac{R}{1+P C}
\end{aligned}
$$

Effette sulla stabilità
$\rightarrow P$ passabasso

$$
\begin{aligned}
& p \text { passabasso } \\
& C=k_{p}+\frac{k_{i}}{\delta}+k_{d} s=k_{p}\left[1 \times \frac{1}{\lambda_{i} \delta}+\frac{\tau d s}{} \quad \omega^{k} \text { tale } d\right.
\end{aligned}
$$

$$
<\operatorname{Rc}\left(j \omega^{*}\right)=\pi
$$

Margive di greadegno ì

$$
\frac{1}{\left|\operatorname{PC}\left(\mathcal{J}^{k}\right)\right|}
$$

$0 k_{p} \uparrow \rightarrow$ si nidure il margine α. gredegra
-k. 4 (sitatione htaria
-kat rotazione antioraria (ounauta marginad.

Rispostar of gradius

$$
\begin{aligned}
& R=\frac{1}{s} \quad E=\frac{R}{1+C P} \\
& \lim _{t \rightarrow 0} e(t)=\lim _{s \rightarrow 0} S E=\lim _{S \rightarrow 0} \frac{1}{1+C(s) P(\delta)}
\end{aligned}
$$

- Sec ha la compononte integrativa ollore

$$
\lim _{\delta \rightarrow 0} c \rightarrow \infty \text { equindi } \lim _{t \rightarrow \infty} e(t)=0
$$

3 e C non ha componatita antysativa
$\lim _{t \rightarrow \infty} e^{(t)}=\frac{1}{1+k_{p} p(0)} \&$ offset del sistemm

Controllore industriale

$$
\begin{aligned}
& \mu(s)=K_{p}[R(s)-\varphi(s)]+\frac{k_{1}}{s}\left[\alpha^{\alpha} R(s)-\varphi(s)\right]+k_{d s}[\beta R(s)-\varphi(s)] \\
& \mu(s)=\underbrace{\left[k_{p}+\frac{k_{i}^{\prime} d}{s}+k_{d} \beta s\right]}_{C^{\prime}} R(s)=\underbrace{\left[k_{p}+\frac{\left.k_{i}+k_{d} s\right]}{s}\right]}_{C} \varphi(s)
\end{aligned}
$$

$$
y=\frac{P c^{10}}{1+P C} R
$$

C ayisce son poli delle fett C'onisce afy oni dale fatt

PSEUDOCODICE

$$
\begin{aligned}
& i=0 \\
& e .0 l d=0
\end{aligned}
$$

\rightarrow forever do

$$
\begin{aligned}
& e=\text { satpoint-actual_position } \\
& i=i+e * d t \\
& d=(e-e-d d) / d t \\
& u=k_{p} * e+k_{i} * i+k d * d \\
& e_{-}-e_{d}=e \\
& \text { wait }(d t)
\end{aligned}
$$

end do

Eigler . Nichols a ClClo APGRTo
\Rightarrow misurace le rispostos al gradiio di $P(8)$

Melode di Ziegler. Nichols (41)
D CICLO CHIUSO
Hp $P(s)$ stabie e $P(0)>0$
(1) si chiude is sistana in Ceozione con C proporzionole es aumenta kp firché it sistema comincio a oscillave
2) prendo note di kp, KPC,,$T_{C}\left[\begin{array}{c}\text { perisde di } \\ \text { Oscillezione }\end{array}\right]$
3) $P: K_{p}=0.5 \mathrm{~K}_{\mathrm{pc}}\left[\begin{array}{l}\text { margine di } \\ \text { guadionoc } 2\end{array}\right]$

PI: $K_{p}=0.45 k_{p a} \tau_{i}=0.8 T_{c}^{\prime}$
$P I D: K_{p=0} \subset K_{p c}, r_{i}=0.5 T_{c}, r_{d} 0_{0} 0.25 T_{c c} K_{p c} R_{c}$

Problema del "uño up"

- C'è un problema se C ha una componente integrativa
D bisogna inibire blintegratore sa $\mu>\mu_{c}$.

Se $\bar{p}]^{1507} \quad K_{p}=\frac{1}{A} \quad P C\left(J \omega^{*}\right)=\frac{2}{\pi}$ margine di guedpro $=\frac{\pi}{2}$

	K	$\tau:$	τd
P	$1 / A$		
$P I$	$0.9 / A$	$3 L$	
PID	$1.2 / A$	$2 L$	$L / 2$

Sistema di controlls
-) Servomotore

DMotore a velacat'a varibale

Motori DC Pagina 94

Controlles di Hotori

$$
w \div k w
$$

) Servo motori
[Azionamenti mecranini, roblica industriade]
\rightarrow risposta veloce
\rightarrow posisione of velocita pecise

\rightarrow risposta lenta (11 costemes illoute)
\rightarrow contrallo di velocitá

Nspire
T - $i_{\infty} \underbrace{B A N} \sim i^{i} \phi_{f}$
flano concateunto con 16 ovelyite

Motori DC Pagina 96

18 May $2015 \quad$ 15:46
9) Hotori in contima

3 Motore a indusione (asinemon)
jMatore sincump

Potenza meccamica

$$
T_{e m} \omega=k_{T} \phi_{f} i_{a} \omega
$$

Potenza elotivice anorbato dal rotores

$$
e_{a} i_{a}=\underbrace{k_{e} \phi_{f}}_{e_{a}} \omega i_{a}
$$

 in precaize dipordito $K_{T}<K_{e}$
alvolyimente

Condizioni stazionarie

$$
\begin{gathered}
\left\{\begin{array}{l}
T_{e m}=k_{T} \phi_{f} I_{a} \\
E_{a}=k_{e} \phi_{f} \omega
\end{array}\right. \\
V \frac{R_{a}}{R_{a}} \frac{I_{a}}{I} E_{a} \quad V=R_{a} I_{a}+E_{a} \\
V=\frac{R_{a} T_{e m}}{k_{T} \phi_{f}}+K_{e} \phi_{f} \omega \\
\omega=\frac{d}{K_{e} \phi_{f}}\left[V-\frac{R_{a} T_{e m}}{k_{+} \phi_{f}}\right]
\end{gathered}
$$

circuits eq. awolyimento del rotole

a volle del commotota,

a monle ded commutatore

Hotore in continua con maynete permanente

$$
\omega=\frac{1}{k_{e} \phi_{f}}\left[V-\frac{R_{a}}{k_{T} \phi_{f}} T_{e m}\right] \quad \uparrow \quad{ }_{f}
$$

FRENATA

$$
V=R_{a} I_{a}+E_{a}
$$

poniamo $\omega>0$ Ee>0

$$
\begin{array}{ll}
\text { se } V>E_{2} \rightarrow I_{a}>0 \\
\text { de } V<E_{l} & H I_{a}<0
\end{array} \quad \xrightarrow{\text { HRENORE }}\left(\begin{array}{l}
\left.T_{e m}>0\right) \\
\left(T_{e m}<0\right)
\end{array}\right.
$$

se $\omega<0 \quad E_{a}<0$
se $V<E_{Q} \rightarrow I_{n}<0 \quad$ Motore $\left(T_{\text {en }} c_{0}\right)$
He $V>E_{R} \rightarrow D_{R}>0$ FREND (Tem>0)

Motre con eccitazoone indipendente
D J prie rotore: iou (avollgimonta di armatura)
2) $\underset{\equiv}{V_{s}}$ per t'aublyimento di statore: is $=\frac{V_{S}}{R_{\delta}} \phi_{f} \alpha$ is

$$
c_{m=}=\frac{k_{T} \phi_{f}}{\left(R_{a}+L_{a} s\right)\left(J_{\delta}+B\right)+k_{T} k_{e} \phi_{f}^{2}} \cdots
$$

2 poli
nessula 20 or

$$
\begin{aligned}
& =\frac{k_{T} \phi_{f}}{k_{e} k_{T} \phi_{l}^{2}\left[\left(1+\tau_{e s}\right) R_{-\sigma_{i} J_{c}}^{k_{e} k_{T} \phi_{f}^{2}}+a\right]} \\
& =\frac{k_{f} \phi_{f} 1}{k_{e} k_{f} \phi_{f}^{z^{3}}\left[\left(1+\tau_{e} \delta\right) \tau_{m s}+1\right]} \\
& k_{T_{m}}
\end{aligned}
$$

Motori DC Pagina 106

Modello di piceolo segnale

$$
\begin{aligned}
& \Rightarrow v=\left(R_{a}+L_{a} s\right) i_{a}+e_{i} \\
& T_{e_{m}}=K_{T} \phi_{f} i_{a}=T_{\omega}+J \omega_{m} s+B \omega_{m} \\
& i_{a}=\frac{T_{\omega}+J \omega_{2} s+B \omega}{k_{T} \phi_{f}} \\
& V=\frac{\left(R_{a}+L_{a} s\right)\left(T_{w}+J_{\omega_{m}} s+B_{w}\right)}{k_{T} \phi_{f}}+k_{e} \phi_{f} \omega_{m} \\
& \omega_{m}\left\{\left[\frac{\left(B+J_{s}\right)\left(R_{a}+L_{a} s\right)}{K_{+} \phi_{f}}\right]+K_{e} \phi_{f}\right\}=V-\frac{T_{w}\left(R_{a}+L_{a} s\right)}{K_{T} \phi_{f}}
\end{aligned}
$$

Risposta al grachno

Motori DC Pagina 108
${ }^{20 \mathrm{May2015}}{ }_{\text {costente }}^{\text {09:40 }}=\frac{L_{a}}{R_{a}} \quad \tau_{m}=\underbrace{\frac{R_{a} J}{k_{e} k_{T} \phi_{t}{ }^{2}}}_{\text {costanto di }}$
tempo eltrice tempo meccanica

$$
\begin{aligned}
\frac{\omega m}{V}=\frac{1}{k_{e} \phi_{f}\left[\left(1+\tau_{e} \delta\right) \tau_{m} s_{+} 1\right]} & \frac{1}{k_{e} \phi_{f}\left(1+\tau_{e} \delta\right)\left(1+\tau_{m} \delta\right)} \\
& \xlongequal{=} \\
& 2 \text { pli REACI } \\
& \text { Molto separati }
\end{aligned}
$$

Sistema di controllo

Requisiti dal convertitore $B C D C$
34 quadranti $\begin{aligned} & v \geq 0 \\ & i n \geq 0\end{aligned}$
\rightarrow, contrallo delle corrento

- tensione v lineare con la tensione di contrallo

Full bridge

253.TOfrance band

Motori DC Pagina 112

Controllo diretto della corrente

Tomokogpin
$* ~(1)$ Tolerance band (Beuldedi Tolleranza) (2) Controllore a feepueniza firsa

HoTore SINCRONO
D) ser vomotori

9 motori a velocita variabile

Rotore
3 magnete permankento

- avvoljemento di campo BRUSHUGS ($>k w$)

Motore Sincrono Pagina 114

$$
+\frac{B}{2} \sin (\omega t+\delta) \cos \left(\frac{4}{4} \pi\right)+\frac{8}{2} \cos (\omega t+\delta) \underbrace{\sin \left(\frac{4}{3} \pi\right)}-\sqrt{3 / 2}
$$

Motore Sincrono Pagina 116

Avrolymenti di statole (di armatura)
ia, ib, ic terka di corrantio thifone

$$
\begin{aligned}
& i_{a}=\sqrt{2} I_{a} \sin (\omega t+\delta) \\
& i_{0}=\sqrt{2} I_{a} \sin \left(\omega t+\frac{2}{3} \pi+\delta\right) \\
& i_{c}=\sqrt{2} I_{a} \sin \left(\omega t+\frac{4}{3} \pi+\delta\right)
\end{aligned}
$$

CAMPO MENETICO RISULTANTE
direzione x (componeate x) $[B$ amp. nair. Campo magnetios di $]$

$$
\begin{aligned}
& B_{R x}=\underbrace{-B \sin (\omega t+\delta)}_{a}+\underbrace{\frac{1}{2} B \sin \left(\omega t+\frac{2}{3} \pi+\delta\right)}_{\alpha^{-1 / 2}}+\underbrace{\frac{1}{2}}_{D_{B / 2}} 8 \underbrace{B \sin \left(\omega t+\frac{\phi}{3} \pi / \pi\right)}_{c} \\
& B_{R_{x}}=-B \sin (\omega t+\delta)+\frac{B}{2} \sin (\omega t+\delta) \cos \left(\frac{2}{3} \pi\right)+\frac{B}{\delta} \cos (\omega t, \delta)=-
\end{aligned}
$$

$\phi_{\text {fan aos }}$ flusso del campo majnetiva del Rotore
fa concatenato con llavvogyimento do stalore (a)

$$
\phi_{f a}=\phi_{f} \sin \omega t
$$

Tampieza
Efa forze elethomothice mdoth sull' aw. (a)

$$
e_{a}=N_{\delta} \frac{d \phi_{p_{a}}}{d t}=N_{\delta} \phi_{p} \omega \cos \omega t=
$$

 $\xrightarrow[\text { pan }]{\rightarrow \text { Efa }}$

$$
B_{R_{x}=}-\frac{3}{2} B \sin (\omega t+\delta) \leftarrow
$$

Componente 9

$$
\begin{aligned}
& \underbrace{B_{3}=\frac{\sqrt{3}}{2} B \sin \left(\omega t+\frac{2}{3} \pi+\delta\right)}_{\text {Ry }}+\underbrace{\frac{\sqrt{3}}{2} B \sin \left(\omega t+\frac{2}{3} \pi+\delta\right)}_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{+\frac{\sqrt{3}}{2} B \sin (\cot t \tilde{t}) \cos \frac{4}{2} \pi+\frac{\sqrt{3}}{2} B \cos (\omega t+\delta) \sin \frac{4}{3} \pi}{\frac{1}{2} \pi-\frac{\sqrt{3}}{2}} \\
& { }^{\prime} B_{R y}=-\frac{3}{2} B \cos (\omega t+\delta)
\end{aligned}
$$

Circunto equivalente dell' awolyimento (a)

$$
\begin{aligned}
P_{e m}=i_{a} e_{f a} & =I_{0} E_{f a} \cos \left(\frac{\pi}{2}-\delta\right)= \\
& =I_{a} E_{f} \sin (\delta)= \\
& =\frac{I_{2} N_{s} \phi_{f} \omega \frac{\sin (\delta)}{2}}{\tau_{\text {maxt }}} \text { se } \delta=\frac{\pi}{2}
\end{aligned}
$$

Sa flusso del campo magnetico eotante concateuato con llawolyimento (a)

$$
\rightarrow N_{S} \phi_{S a}=L_{L_{a}}^{L_{2} L_{K}}
$$

$$
2 \text { a comprande lloffetts dedjbceoppisints }
$$ mituo con (b) e con (c)

esa forza e.m mollia sull' awolyimentor (a)

$$
e_{\pi}=N_{S} \frac{d \phi_{2 a}}{d t}=\frac{L_{i}}{d t}
$$

Controllo di motore sincmono

$$
P_{\text {em }}^{250102015}=\frac{3}{2} I_{Q} N_{S} \phi_{f} \omega \sin \delta=T_{e m} \omega
$$

(su ${ }^{\uparrow}$ a wrolymentl)
NON DIPENDE

$$
\frac{T_{\text {em }}}{}=\frac{3}{2} I_{\uparrow} N_{S} \phi_{f} \sin \delta<\text { DALLA velocitá }
$$

Hax se $\delta=\frac{\pi}{2}$
9) ECCITAZWONE TRAPEZOIDALE
efa ${ }^{(t)}$) si projatta statare estore in mod. da acceitudre l'andamento piotto agli estremi.

$$
\operatorname{lem}(t)=\operatorname{lga}_{a}(t) \dot{x}_{a}(t) \xrightarrow{\frac{1}{3} T}{ }^{\frac{1}{6} t}=E_{a} g_{e} \rightarrow \operatorname{Nan}^{\frac{2}{3} T}
$$

SoHMNVBO LE 3 FASI \rightarrow Jo pa $\frac{1}{3} T$

$$
P_{\text {en }} B T(t)=2 E_{f l a} D_{0} \forall t
$$

Motore Sincrono Pagina 124

Controllo delle corrento con boude di Tollerouze

Mobre Asincrono (a indezzione)

Motore Asincrono Pagina 126

$W^{2060 y o n s i s}$ velout's anyolare du rotezinone del
campe mannetico di stalore
wr volocità angplare di rotazione del robose
$\omega-\omega_{r}=\omega_{g l}$ volocità (onpplare) di (slittaments (slipping)
fluens del compo megadivo athoreso

$$
\begin{gathered}
L^{\text {eevvedy nolt dol rotore }} \\
\phi_{g}^{(t)} \Phi \Phi_{y} \sin \left(\omega_{s} t\right) \\
E_{r}=N_{R} \frac{d \phi_{y}}{d t}=N_{R} \Phi_{y} \omega_{s e} \cos (\text { apt }) \\
E_{R} \\
\dot{E}_{R}=\dot{I}_{R}\left[R_{r}+J \omega_{s l} L_{r}\right]
\end{gathered}
$$

Cruito equivalente roportato sul primario

$$
\begin{aligned}
& \theta=\operatorname{arctg}\left[\frac{\delta \omega_{r l} L_{r}}{R_{r}}\right] \\
& \text { - } P_{\text {ag }}=E_{o g} I_{r}^{\prime} \cos \theta \\
& \text { - } P_{m}=P_{\text {og }} \frac{\omega_{r l}}{R_{r}^{\prime}\left[\frac{\omega}{\omega_{r l}-1}\right]}=P_{r y} \frac{\omega-\omega_{r l}}{\omega}, P_{\text {eg }} \frac{\omega_{r}}{\omega}
\end{aligned}
$$

Cirunits equivalente

rapporto spire $a=\frac{N_{R}}{N_{S}} \quad\left[\dot{E}_{R}=\dot{E}_{a g} a \frac{\omega_{s l}}{\omega}\right]$

Tem

Pilotagnio a coppra costante \rightarrow wil costante

$$
V_{S} \approx E_{o g}=\omega \phi_{y} \xlongequal{V_{\delta} \propto \omega^{2} \omega_{r}}
$$

Dipendenze funzional:

$$
T_{\text {em }}=\frac{P_{o y}}{\omega}
$$

$$
\begin{aligned}
& \rightarrow E_{a g} \propto \underbrace{\omega \Phi_{a g}} \quad E_{r}=E_{0 y} \frac{\omega_{g l}}{\omega} \cdot a \propto \omega^{\omega_{g l} \Phi_{\text {ag }}} \\
& P_{\text {ay }} \propto \omega \omega_{s e} \Phi^{2} \quad I_{r} \propto C_{c_{g e}} \Phi_{\text {ag }} \\
& P_{\text {em }}=\frac{P_{a y} \omega_{r}}{\omega} \propto \omega_{r} \omega_{s l} \Phi_{a y}^{2} \\
& \text { Tem= } \frac{P_{e m}}{\omega_{r}} \propto \omega_{s l} \Phi_{a y}^{2} \leftarrow
\end{aligned}
$$

Motore Asincrono Pagina 134

Olosputto $\underset{\sim}{\text { U vo }}$

Controlls di servomotore

Motore Asincrono Pagina 136

