

PID

${ }_{L}^{T}=\frac{R}{1+C P}$
Risposta el gnadius
$R=\frac{1}{s}$
$\lim _{t \rightarrow \infty} e(t)=\lim _{\delta \rightarrow 0} S E(s)=\lim _{s \rightarrow 0} \frac{1}{1+C(s) P(s)}$

- perché lersore asintotivo (offret) sia nullo
$C P$ dove aroe un polo nelli origine $[$ ho bisogno
dolae componete Instegnative in $C]^{\text {a }}$
Aetrimatio $\lim _{\delta \rightarrow 0} \frac{1}{1+C P}=\frac{1}{1+k_{P} P(-)}$

Pseudocodice

$$
\left.\begin{array}{l}
i=0 \\
e=e-0 \\
\text { forever do } \\
e=\text { setpoint - actudposition } \\
i \\
i=i+e * d t \\
d
\end{array}\right)=\left(e-e _o l d\right) / d t .
$$

Controllore PID industiale

$$
\begin{aligned}
& \xrightarrow{R}
\end{aligned}
$$

Problema del "wind up"

ie problema si manifesta de C la una componente intogrativa D bis-gna imibire linitegnutore se $u>\mu_{c}$

MeTodo di zieglar-Nichols (41)
\rightarrow Clar chuso
Hp. $P(s)$ stabiee $P(0)>0$

Riceltas

o) si chindeil sitema in reszione can C proporzionale e si aumatre kp finché il sistitur hon oscilla (mettoudo an gradiks in ingono)
\Rightarrow Proudo uta del Kp_{c}, T_{C} (pariododi $\left.\begin{array}{c}\text { oscillezione }\end{array}\right)$

PID] $K_{p}=0.6 \mathrm{Kp}, \tau_{i}=0.5 T_{c}, \tau_{d}=0.125 T_{c}$

