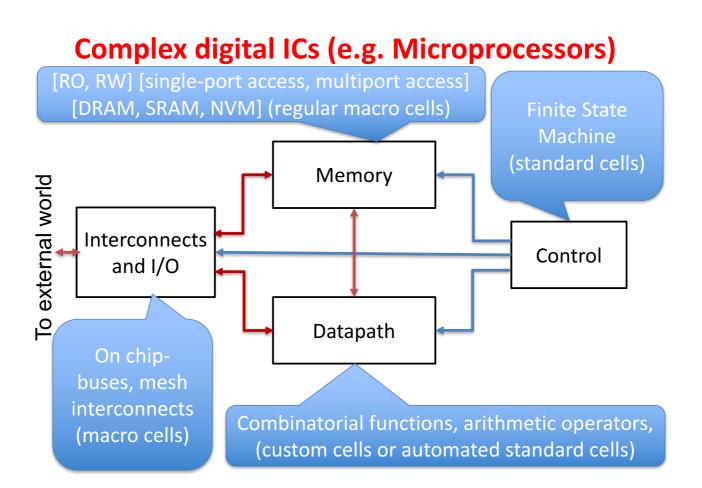
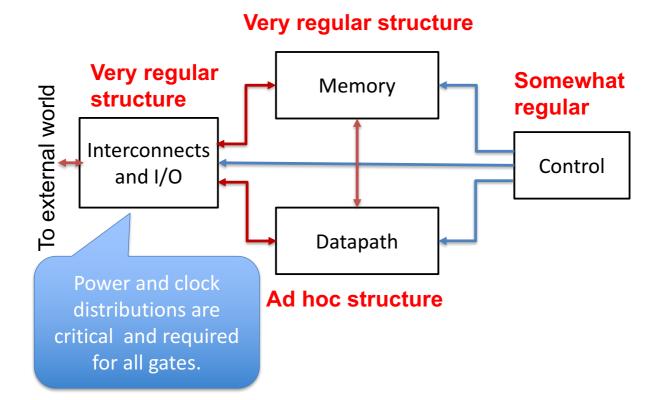
Implementation strategies for digital design

Chip complexity grows faster than design productivity


From 1980: **Design gap** Compound complexity growth rate (#transistors/chip): **58%/Year**

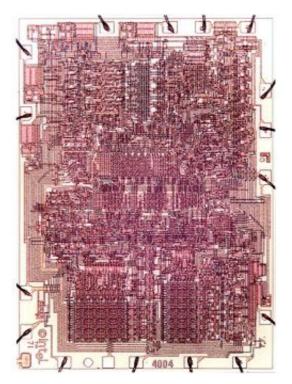
Compound productivity growth rate (Transistor/Person-month): 21%/Year


→ Team size increases (now 1000)

Productivity leaps are due to the introduction of new design technologies

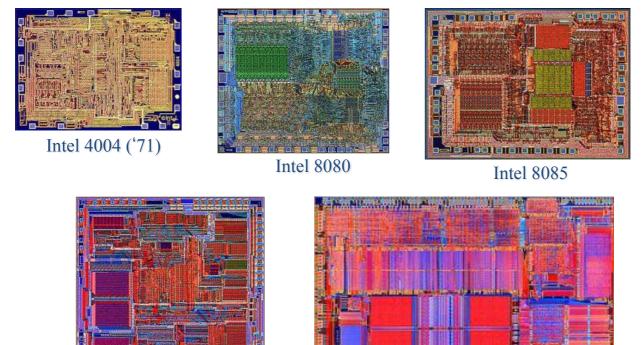
Time: 70s	Programmable Logic Arrays
	Standard cells
	Macro cells, module compilers
	Gate arrays
	Reconfigurable hardware

Semiautomatic placement and routing


Intel 4004 – custom design

2300 PMOS

10 μ m process


Clock: 108 KHz

Area: 3 mm x 4 mm

Courtesy Intel

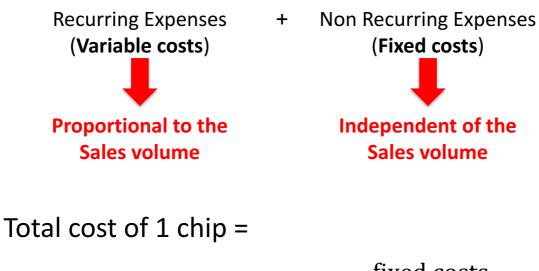
Transition to Automation and Regular Structures

Courtesy Intel

Intel 8286

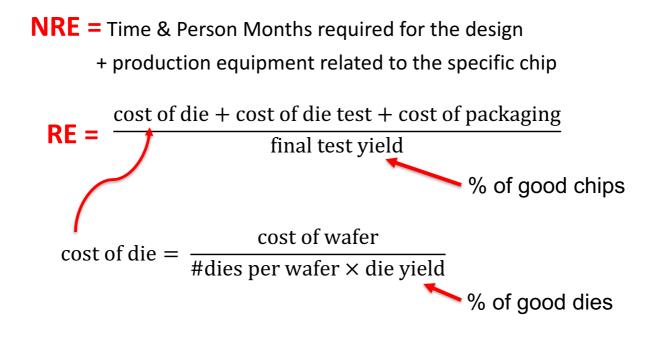
Tradeoff between flexibility and efficiency

ADVANTAGES of Flexibility (Programmability):


- Reusable design of multiple applications
- Generic hardware with upgradable software

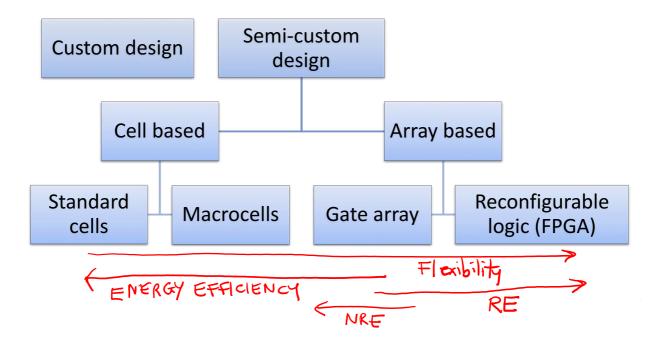
DISADVANTAGES:

- Loss in performance: large overhead and slower operation (instruction decoding)
- Increase in energy consumption: same reason.



Cost of an integrated circuit

Variable cost of 1 chip + $\frac{\text{fixed costs}}{\# \text{ of chips}}$


NRE (Fixed Costs) and RE (Variable Costs)

Die Yield

Empirical formula (for a modern CMOS process $\alpha \sim 3$) Die yield = $\left[1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \frac{\# \text{ defects per unit area } \times \text{ die area}}{1 + \frac{\# \text{ defects per unit area } \times \frac{\# \text{ defects per unit area } \times \frac{\# \text{ defects } \times \frac{\# \text{$ α Die Yield (%) vs Die Area (cm²) 100% For example: 1 defect/cm² 80% 60% Die area **Yield** 0.025 cm^2 40% 99% 0.25 cm^2 78% 20% 2.5 cm² 16.2% 0% 0 0,5 1 2 1,5 2,5

Implementation approaches to digital design

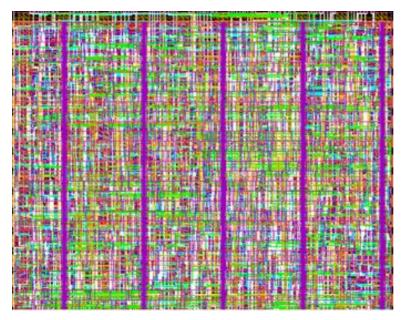
Custom design

Transistor by transistor design of complete circuit

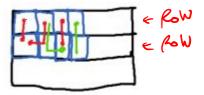
- [+] High performance
- [-] Time consuming \rightarrow High cost of design
 - \rightarrow High time to market

WHEN	Blocks that have to be used many times	e.g. Library Cells		
	Very high volume ICs	e.g. Microprocessors		
	Cost is not an issue	e.g. defense applications e.g. supercomputing		
		applications		

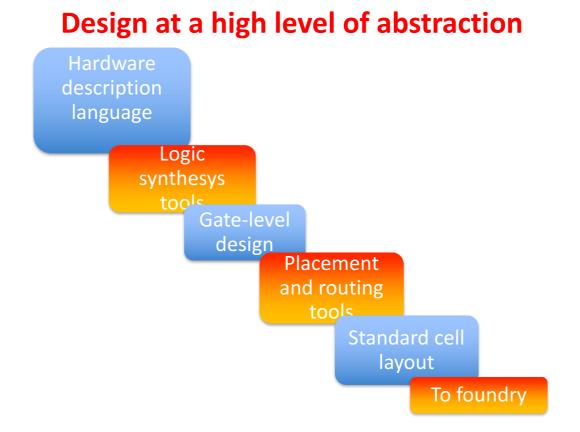
Cell-based semicustom design


We need a library of cells to be used for the design

Type of library	
Standard cells	Logic gates, MSI circuits: Decoders, multiplexes, encoders
Macro cells	Memory Bank
Mega cells	Microprocessor, DSP, PCI interface

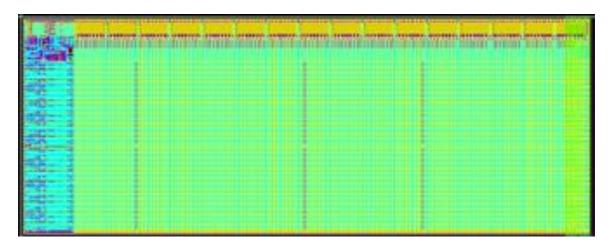

1st generation Standard Cell — Example

	Rows for cells
	— Routing channel
	Rows for cells
	[Brodersen92]
Not very dense – lot of space used by t	he routing channels


Standard Cell – The New Generation

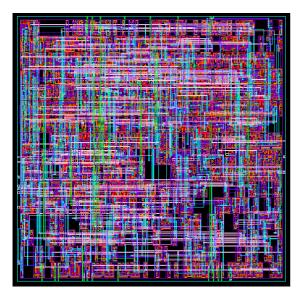
Cell-structure hidden under interconnect layers

Much denser structure: no space occupied by routing channels Routing occurs through higher interconnect layers

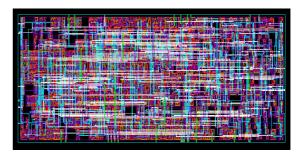

Suitable to Fabless industry model

Fabless company	Design + Testing + Sale	e.g. Marvell, Qualcomm Dialog Semiconductor, Altera, Xilinx
Foundry	Fabrication + Standard cells for Fabless	e.g. TSMC, UMC, SMIC
IDM (Integrated Device Manufacturer)	Design + Fabrication + Testing + Sale	e.g. INTEL, Samsung STM
IP Vendor	Macro cell library Soft Macromodules IP	e.g. ARM

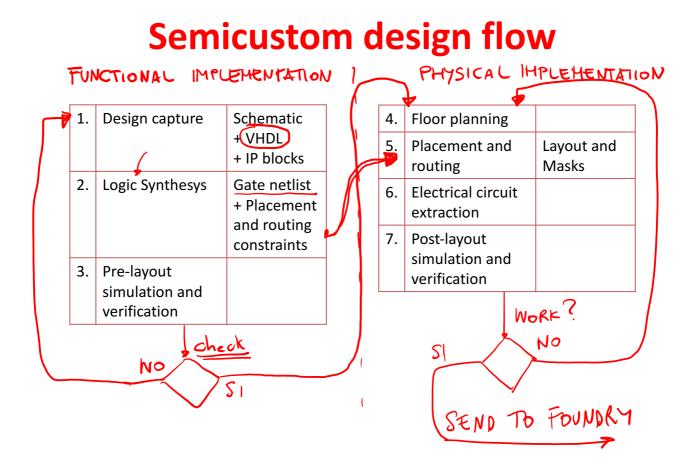
Macrocells or Macromodules


Hard Macrocells	Custom designed for a specific CMOS process	Predetermined functionality AND Predetermined physical implementation
		e.g. embedded microprocessor, embedded memory
Soft Macrocells	Portable to different CMOS Processes (Gate Netlist)	Predetermined functionality but NO physical implementation
		Typically provided by IP vendors [with software tools, testing procedures and tools]

MacroModules

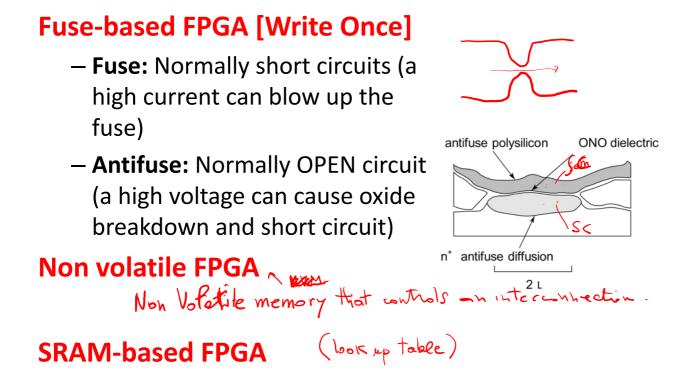


256×32 (or 8192 bit) SRAM Generated by hard-macro module generator


Soft MacroModules and IP

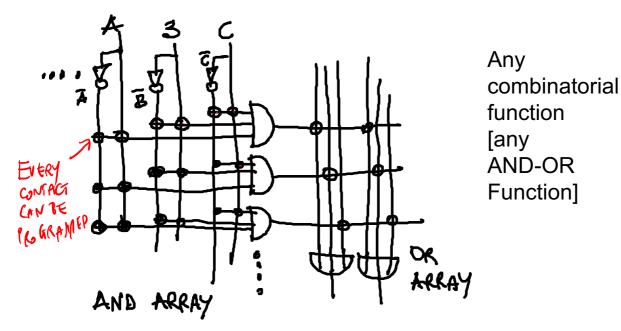
string mat = "booth"; directive (multtype = mat); output signed [16] Z = A * B;

Synopsys DesignCompiler

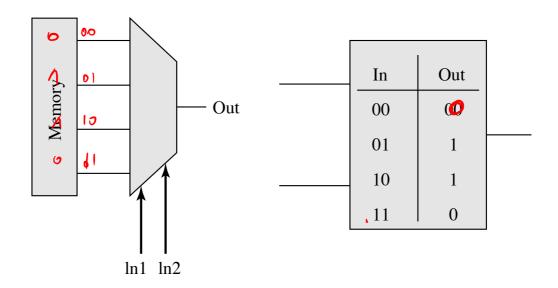


Array-based implementation

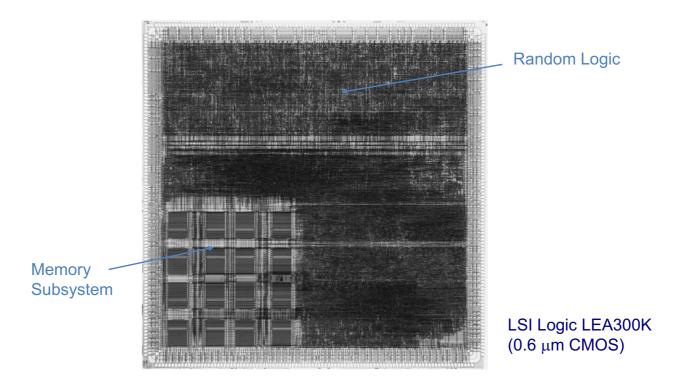
Do not require a complete manufacturing run


Gate array	Mask Programmable arrays		
(or Sea of gates)	Pre diffused wafers, ONLY Metal layers are missing		
Field Programmable Gate Array (FPGA)	Complete separation between the manufacturing phase and the implementation phase		
	Manufacturing phase has large volumes [+] Short Time-to-market and LOW NRE [-] Performance loss and HIGH RE		

How are cells programmed


What type of logic can be programmed ?

Array-based programmable logic (e.g. PLA, PAL)



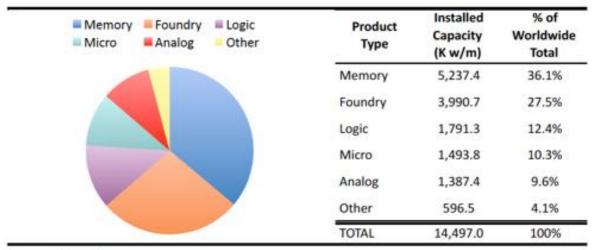
Cell-based programmable logic

Look Up Table based logic cells: Any combinatorial logic

Sea of gates

Courtesy LSI Logic

RAM-based FPGA


Xilinx XC4000ex

Courtesy Xilinx

Xilinx Virtex UltraScale

Value	Deliverables
Programmable System Integration	 Up to 5.5M System Logic Cells at 20nm using 2nd generation 3D IC Integrated 100G Ethernet MAC and 150G Interlaken cores
Increased System Performance	 Up to two speed-grade improvement with high utilization 30G transceivers for chip-to-chip, chip-to-optics, 28G backplanes 16G backplane capable transceivers at half the power 2,400 Mb/s DDR4 for robust operation over varying PVT
BOM Cost Reduction	 Up to 50% lower cost - half the cost per port for Nx100G systems VCXO and fractional PLL integration reduces clocking component cost 2,400 Mb/s DDR4 in a mid-speed grade
Total Power Reduction	 Up to 40% lower power vs. previous generation Fine granular clock gating with ASIC-like clocking Enhanced logic cell packing reduces dynamic power
Accelerated Design Productivity	 Footprint compatibility with Kintex UltraScale devices for scalability Seamless footprint migration from 20nm planar to 16nm FinFET Co-optimized with Vivado Design Suite for rapid design closure

IC Production – Installed capacity

Worldwide Capacity by Product Type as of Dec-2012 (Installed Monthly Capacity in 200mm-Equiv. Wafers x1000)

Source: IC Insights

IC Production Breakdown by Region

Regional Capacity by Product Type as of Dec-2012 (Installed Monthly Capacity in 200mm-Equiv. Wafers x1000)

Product	Americas	Europe	Japan	Korea	Taiwan	China	ROW	Total
Analog	323.5	328.3	391.9	31.5	19.2	153.5	139.4	1,387.4
Memory	382.9	29.3	1,109.1	1,821.8	1,194.3	338.3	362.0	5,237.4
Logic	341.1	167.8	704.2	363.1	37.7	70.9	106.5	1,791.3
Micro	727.2	326.4	251.1	26.3	5.1	11.2	146.6	1,493.8
Foundry	296.5	135.5	124.5	254.6	1,899.0	737.3	543.3	3,990.7
Other	50.0	128.5	119.2	67.5	10.1	19.8	201.3	596.5
Total	2,121.3	1,115.7	2,700.1	2,564.7	3,165.4	1,330.8	1,499.0	14,497.0

Source: IC Insights

Korea, Japan ~ 2x Europe Taiwan ~ 3x Europe