Power Integrated Circuits

Туре	Ratings	Process (example)
Discrete modules	V up to ~KV, I up to ~KA	
Smart Power/Smart Switches	I < 50-100 A V < 1 KV	Vertical + Lateral Devices
High-Voltage ICs	I < 50-100 A, V< 1 KV	High Voltage BCD
High-density PMIC s	V<100 V	High Density BCD

Smart Power / Smart Switches (I < 50-100 A, V < 1KV):

Vertical Power devices + Lateral Devices for (some) logic

If Drain of Power MOSFET at positive voltage \rightarrow devices are insulated by the reversed biased p-body - n-drift region junction

Smart Power / Smart Switches (I < 50-100 A, V < 1KV):

Vertical Power devices + Lateral Devices for (some) logic

If Drain of Power MOSFET at positive voltage \rightarrow devices are insulated by the reversed biased p-body - n-drift region junction

STM BCD Process

Three process technologies on a single chip

- Bipolar for precise analog circuits (e.g. bandgap)
- CMOS for digital design
- DMOS for power and high voltage

Pros:

- Improved reliability (no bonding, no complex packaging)
- Reduced EMI
- Smaller chip area (improved integration)

Cons

 No component is optimized (e.g. digital is not optimized (long channel lengths and thick oxides))

STM BCD Process

Chronology of BCD Processes

taken from Fig. 4.4 of Y. Fu et al. CRC Press, 2014

STM BCD process family

Infineon 130 nm BCD

5 metal layer

STI

Buried layer

DTI

The domain of MOSFETs and IGBTs is increasing

Progress in IGBTs

Courtesy of Infineon 2011

Development of power density for IGBTs*

Evolution of power devices

Active devices are a large fraction of the total system cost Design tries to minimize the number of active devices and their maximum ratings (cost)

Progress in Power devices DRIVES

changes in circuit choices and market adoption.

Power MOSFETs	switched-mode power supplies
IGBTs	Energy efficient motor drives with inverters
New materials: SiC, GaN	Class D audio amplifier, Inverter for motion control – AC-DC and DC-DC power supply

Comparison between different materials for power FETs

Let us consider a PN junction with NO punchthrough:

- W is the width of the depletion region (contained in the drift region)
- Electric field at the junction:

$$E = \frac{q N_D}{\varepsilon} W$$

• Voltage drop V in W:

$$V = \frac{1}{2} \frac{q N_D}{\varepsilon} W^2 = \frac{WE}{2}$$

We also have
$$2V \frac{qN_D}{\epsilon} = E^2$$

potential E V Х W

Resistance in the ON state R_{ON}

if we put the breakdown field E_{BD} in the place of *E*, and the breakdown voltage V_{BD} in the place of V:

•
$$2V_{BD} = WE_{BD} \rightarrow W = \frac{2V_{BD}}{E_{BD}}$$

• $2V_{BD} \frac{qN_D}{\epsilon} = E_{BD}^2 \rightarrow qN_D = \frac{\epsilon E_{BD}^2}{2V_{BD}}$

 R_{ON} is due to transport in the drift region. We consider the case of no conductivity modulation $n=N_D$ (MOSFETs and Schottky

diodes):

$$R_{ON} = \frac{W}{A} \frac{1}{\mu q n} = \frac{W}{A} \frac{1}{\mu q N_D}$$

$$R_{ON}A = \frac{2V_{BD}}{E_{BD}} \frac{1}{\mu \varepsilon} \frac{2V_{BD}}{\varepsilon E_{BD}^2} = \frac{4}{\mu \varepsilon} \frac{V_{BD}^2}{\varepsilon E_{BD}^3}$$

FOM of alternative materials (to Si)

$$R_{ON}A = \frac{4}{\mu\varepsilon} \frac{V_{BD}^2}{E_{BD}^3}$$

The breakdown voltage is a system specification

 \rightarrow For the same V_{BD}, different materials give different R_{ON}

Baliga proposed a Figure of Merit for materials normalized to Si:

 $FOM = \mu \varepsilon E_{BD}^3$

	Si	GaAs	SiC	GaN
Breakdown Electric Field (MV/cm)	0.3	0.4	2.4	3.0
Electron mobility (cm ² /Vs) at 300K	1350	8500	370	900
Relative dielectric constant	11.8	13.1	10	9.5
BFOM = 1/($\mu \epsilon E_{BD}$) normalized to Si	1	17	119	537

Thermal properties of alternative semiconductors

	Si	GaAs	SiC	GaN
Bandgap at Room T (eV)	1.12	1.43	2.2-3	3.4
Thermal conductivity (W/(cm K))	1.5	0.5	5	1.3
Max Operating Temp. (C)	150	300	600-1000	400
Saturation velocity (cm/s)	1e7	2e7	2.5e7	2.5e7

Higher bandgap \rightarrow Harder impact ionization \rightarrow Higher E_{BD}

Higher bandgap \rightarrow Lower intrinsic carrier density n_i at a given T \rightarrow Lower leakage currents at given T \rightarrow Higher Max operating Temp

Siemens 1999, STM 2000

P-pillar introduces a charge sharing mechanism that enables to increase drift region doping (10x) for the same V_{BD} and drift region thickness

For $V_{BD} = 600 \text{ V} \rightarrow 5x \text{ reduction in } R_{ON} \text{ wrt MOSFET}$

Source: Fairchild AN5232

SiC devices

- SiC diodes, SiC JFETs, SiC MOSFETs
- SiC JFET (Infineon)

GaN-AlGaN HEMT

- AIGaN is piezoelectric (no doping -> high mobility)
- Lateral device (reduced C, high field in the upper layers)
- Normally ON

Comparison between different technologies Superjunction SiC JFET GaN HEMT

MOSFET a) G S D

C) S D 2DEG

n-Epitaxy
p-Implantation

Oxide

- p+-Implantation
 - n+-Implantation

Metal/Poly-Si

- AIN/AIGaN Barrier
- Si Substrate

Buffer layer

Evolution of R_{ON} for 600 V V_{BD}

GaN also has lower output switching charge, enabling higher frequency

Power versus frequency Courtesy of Infineon 2011

Ideal limits of SiC and GaN have not been reached yet

Fig. 12 of Ikeda et al. Proc. IEEE Vol. 98, pp. 1151-1161, 2010.

Challenges of alternative materials

- Silicon has enormous accumulated past investments. Money spent on other materials is small in comparison
- GaAs
 - Small wafer size (\rightarrow higher cost)
 - Unwanted impurities \rightarrow reduce EBD and carrier lifetime
 - No oxide (is it really a problem?)
- SiC
 - Even smaller wafer size and more impurities (SiC on Si)
 - SiC-SiO₂ interface not perfect
- GaN (GaN on Si)
 - Reliability issues (impurities)

Added value of SiC and GaN

