

Tiristore (Thyristor)

- SCR – Silicon Controlled Rectifier – 1957 GE

![Thyristor Diagram](attachment:thyristor_diagram.png)

- Drift region

Ideal thyristor

- $V_{AK} > 0$ Forward blocking
 - J_2 supports V_{AK}
- $V_{AK} < 0$ Reverse blocking
 - J_3 supports V_{AK}

- Two states:
 - OFF: BJTs in cutoff
 - ON: BJTs in sat.

Ebers-Moll model

- $I_{ED} = I_{CS}$
- $I_E = -I_{ED} - \alpha_R I_{CS}$
- $I_C = \alpha_F I_{ED} + I_{CS} = -\alpha_F I_{ED} + I_{CO}$

\[I_{CO} = I_{CS}(1-\alpha_F) \]

Equivalent circuit

\[i_A = i_L + i_C2 \]

\[i_A = \frac{\alpha_{pnp} i_G - I_{CO1} + I_{CO2}}{1 - \alpha_{pnp} - \alpha_{pnp}} \]

\[\alpha_{pnp} + \alpha_{pnp} < 1 : \text{OFF} \]

\[\alpha_{pnp} + \alpha_{pnp} = 1 : \text{ON} \]

Turn on

- If V_{AK} increases, the voltage drop in $n-$ shrinks the base of the PNP transistor $\Rightarrow \alpha_{pnp}$ increases (an partly on the NPN transistor) $\Rightarrow \alpha_{pnp}$ increases

- Injection of electrons in the drift region causes more hole injection from the anode, to compensate excess charge \Rightarrow positive feedback.

On state operation

- $V_{ON} = V_G + R_{ON} I$

- N_{SD}^+

- N-drift

- N⁺-doping

- Conductivity modulation
Turn off

- Gate current cannot turn the SCR off
- Cathode area >> gate area
- Current crowding keeps pn+ junction forward bias
- SCR is turn off with $V_{AK} < 0$

DC characteristics

- $V_{WUM} = V_{ON} + V_{BO}$
- V_{WUM} and V_{BO} depend on drift region

Turn on transient

- i_A vs. t
- i_{GR}
- i_{tp} = plasma spreading time
- i_f = limit di/dt
- V_{AK} vs. t

Turn off transient

- i_A vs. t
- t_f = recovery time
- i_{rr}
- V_{AK} vs. t

Cathode short

- n^+ and p^+ drift region
- J_e, J_i, J_3

Interdigitated gate-cathode

- Interdigitated gate-cathode structure
- V_{AK}
- CATHODE
- GATE
Gate Turn Off (GTO) thyristor

GTOs are turned off with negative i_g pulse
1. Highly interdigitated structure (1K cells)
2. Cathode islands
3. Anode short

![GTO structure diagram]

Turn off

- To reduce turn off i_G we must suppress α_{pnp}
- In order to suppress α_{pnp} we can
 - Use anode short / barrier thyristor does not block $V_{AK} < 0$
 - Increase thickness and recombination in drift region $\Rightarrow V_{ON}$ increases
- Typically
 $$i'_G \approx \frac{1}{3} \div \frac{1}{5} i_A$$

GTO switching characteristics

- GTO is fast \Rightarrow requires snubber circuits

![GTO switching characteristics diagram]

Turn on transient

- V_d sets I_0
- RL limits di/dt at turn on
- [GTO turns on before diode turns off]
- V_{AK} di/dt limited by snubber
- V_{ON}
- [back porch]
GTO switching characteristics

- GTO is fast → requires snubber circuits

Turn off transient

\[\frac{dv}{dt} < \frac{I_o}{C} \]

\[\text{AC turn off} \]

\[\text{Snubber limits } \frac{dv}{dt} \]

\[v_{AK}, v_{ON}, v_{off} \]