DC-DC Converters

Typical uses:

- DC Power supplies
- DC Motor drives
- Portable Electronics

Figure 7-1 A dc-dc converter system.

Ideal concept of step-down

 converter with PWM* switching

Assumptions: Switches, L, C are lossless, DC input has zero internal impedance, load is an equivalent R
This cannot work: 1. Load is inductive and can destroy switch by dissipating all stored energy, 2. output voltage must be continuous

Step-down (buck) converter

DC power supplies, DC motor drives -- $\mathrm{V}_{\mathrm{o}}<\mathrm{V}_{\mathrm{d}}$
Low-pass filter keeps

Diode avoids voltage spike on switch (when switch is off, diode provides current to L)

Continuous-conduction mode

Current in L is always >0

- $t_{\mathrm{on}}: \frac{d I}{d t}=\frac{V_{d}-V_{o}}{L}$
- $t_{\mathrm{off}}: \frac{d I}{d t}=-\frac{V_{o}}{L}$

At steady state: $I\left(t+T_{s}\right)=I(t)$.
Therefore
$\frac{V_{d}-V_{o}}{L} t_{\text {on }}-\frac{V_{0}}{L} t_{\text {off }}=0$
$\frac{V_{o}}{V_{d}}=\frac{t_{o n}}{T_{s}}=D$

Limit of continuous conduction

If the ripple amplitude $I_{L B} \equiv \frac{I_{\text {peak }}}{2}=I_{o}$, the converter is at the limit of continuous conduction (i.e. $\min \left\{I_{L}\right\}=0$)

$$
I_{L B} \equiv \frac{I_{\text {peak }}}{2}=\frac{t_{o n}\left(V_{d}-V_{o}\right)}{2 L}=\frac{D T_{s} V_{d}(1-D)}{2 L}=I_{L B \max } 4 D(1-D)
$$

(a)

(b)

Figure 7-6 Current at the boundary of continuous-discontinuous conduction: (a) current waveform; (b) $I_{L B}$ versus D keeping V_{d} constant.

Limits of continuous-discontinuous

conduction (constant V_{d})

Continuous

Figure 7-8 Step-down converter characteristics keeping V_{d} constant.

Discontinuous-conduction mode

 with constant V_{d} Motor divives$I_{\text {peak }}=\frac{\left(V_{d}-V_{o}\right) D T_{s}}{L}=\frac{V_{o} \Delta_{1} T_{s}}{L}$

$I_{\mathrm{peak}}=\frac{V_{d} T_{s}}{L} \frac{D \Delta_{1}}{D+\Delta_{1}}$

$$
I_{\text {peak }}=8 I_{\text {LBmax }} \frac{D \Delta_{1}}{D+\Delta_{1}}
$$

$I_{o} T_{S}=\frac{I_{\mathrm{peak}}\left(D+\Delta_{1}\right) T_{S}}{2}$

Figure 7-7 Discontinuous conduction in step-down converter.
$I_{o}=4 I_{\text {LBmax }} D \Delta_{1}$

$$
\frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+I_{o} /\left(4 I_{L B \max }\right)}
$$

Limits of continuous-discontinuous conduction (constant Vd)

$\frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+\frac{I_{o}}{4 I_{\mathrm{LBmax}}}}$
Figure 7-8 Step-down converter characteristics keeping V_{d} constant.

Discontinuous-conduction with constant Vo

At the limit of continuous conduction

$$
I_{L B}=\frac{V_{o} T_{S}(1-D)}{2 L}=I_{\mathrm{LB} \max }(1-D)
$$

We can write D explicitly from:
$I_{\text {peak }}=\frac{V_{o} \Delta_{1} T_{S}}{L}=2 I_{\text {LBmax }} \Delta_{1}$
$I_{o}=\frac{I_{\mathrm{peak}}\left(D+\Delta_{1}\right)}{2}=I_{\mathrm{LBmax}} \Delta_{1}\left(D+\Delta_{1}\right)$ $\frac{V_{d}}{V_{o}}=\frac{D+\Delta_{1}}{D}$
$\frac{I_{o}}{I_{\text {LBmax }}}=D^{2} \frac{V_{d}}{V_{o}}\left(1-\frac{V_{d}}{V_{o}}\right) \square D=\left[\frac{V_{o}}{V_{d}} \frac{I_{o}}{I_{L B \max }}\left(1-\frac{V_{d}}{V_{o}}\right)^{-1}\right]^{\frac{1}{2}}$

Discontinuous-conduction with constant Vo

Continuous: $I_{o}>I_{L B}$

Figure 7-9 Step-down converter characteristics keeping V_{o} constant.

Output voltage ripple

First order calculation:

The average iL flows in the load, and the ripple component in C .

Additional charge:

$$
\Delta Q=\frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T_{S}}{2}
$$

Current ripple:

$$
\Delta I_{L}=\left(V_{o} / L\right)(1-D) T_{S}
$$

Voltage ripple:

$$
\begin{array}{rlr}
\Delta V_{o}=\frac{\Delta \mathscr{Q}}{C}=\frac{V_{o}}{8 L C} T_{s}^{2}(1-D) & \frac{\Delta V_{o}}{V_{o}}=\frac{\pi^{2}}{2}(1-D) \frac{f_{c}^{2}}{f_{s}^{2}} \\
f_{c}=\frac{1}{2 \pi} \frac{1}{\sqrt{L C}} &
\end{array}
$$

Step-up (boost) converter

- DC power supplies
- Regenerative breaking of DC motors

Output voltage always larger than the input

Switch on \rightarrow diode off, output
 isolated, L accumulates energy from input
Switch off \rightarrow diode on, load receives energy from input and from L

Continuous-conduction mode

Periodic conditions:

$$
\frac{t_{\mathrm{on}} V_{d}}{L}+\frac{t_{\mathrm{off}}\left(V_{d}-V_{o}\right)}{L}=0
$$

$$
\begin{aligned}
& \text { if } t_{\mathrm{on}}=D T_{s} \text { and } \\
& t_{\mathrm{off}}=(1-D) T_{s}
\end{aligned}
$$

$$
\begin{aligned}
& T_{s} V_{d}+T_{s}(1 \\
& \frac{V_{o}}{V_{d}}=\frac{1}{1-D}
\end{aligned}
$$

No losses:
$V_{o} I_{o}=V_{d} I_{d}$

$$
D) V_{o}=0
$$

Continuous-discontinuous boundary

Average current in L
= ripple :

$$
\begin{aligned}
& I_{L B}=\frac{V_{d} t_{o n}}{2 L} \\
& =\frac{V_{o}(1-D) T_{s} D}{2 L}
\end{aligned}
$$

Average output current at the limit:

$$
\begin{aligned}
& I_{O B}=I_{L B}(1-D) \\
& =\frac{V_{o} T_{S}(1-D)^{2} D}{2 L}
\end{aligned}
$$

$I_{L B}$ is max if $\mathrm{D}=0.5 \rightarrow I_{L B \max }=\frac{V_{o} T_{S}}{8 L}$,
$I_{o B}$ is max if $\mathrm{D}=1 / 3 \rightarrow I_{O B \max }=\frac{2 V_{o} T_{S}}{27 L} \rightarrow I_{O B}=\frac{27}{4}(1-D)^{2} D I_{o B \max }$

Discontinuous conduction mode

Periodic conditions:

$$
\begin{gathered}
\frac{D T_{s} V_{d}}{L}+\frac{\Delta_{1} T_{s}\left(V_{d}-V_{o}\right)}{L}=0 \\
\frac{V_{o}}{V_{d}}=1+\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}
\end{gathered}
$$

Average current in L

$$
I_{d} T_{s}=\frac{D T_{S} V_{d}}{L} \frac{\left(D+\Delta_{1}\right) T_{S}}{2}
$$

Average output current

$$
\begin{aligned}
& I_{o}=I_{d} \frac{\Delta_{1}}{D+\Delta_{1}}=\frac{T_{s} V_{d}}{2 L} D \Delta_{1} \\
& =\frac{27}{4} I_{o B \max } \frac{V_{d}}{V_{o}} D^{2} \frac{V_{d}}{V_{o}-V_{d}}
\end{aligned}
$$

Continuous-discontinuous mode

(constant V_{o})

Continuous mode:

$I_{o}>I_{o B}$
$=I_{o B \max } \frac{27(1-D)^{2} D}{4}$
$D=1-\frac{V_{d}}{V_{o}}$
Discontinuous mode:
$I_{o}<I_{o B}$
$D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B \max }}\right]^{\frac{1}{2}}$

Figure 7-15 Step-up converter characteristics keeping V_{o} constant.

Losses and ripple

Losses: inductor, capacitor, switch, diode
Ripple: first order assumption: when the switch is on the C is discharged through the load

$$
\begin{gathered}
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{I_{o} D T_{s}}{C}=\frac{V_{o} D T_{s}}{R C} \\
\frac{\Delta V_{o}}{V_{o}}=D \frac{T_{s}}{\tau}
\end{gathered}
$$

Buck-boost converter

Negative DC power supply
Switch on: inductance
accumulates energy, diode off,
C supplies the load
Switch off: diode on, inductance transfers energy to the capacitance and to the load

Periodic conditions in
continuous conduction mode:
$\frac{D T_{s} V_{d}}{L}-\frac{V_{o}(1-D) T_{s}}{L}=0$

$$
\begin{aligned}
& \frac{V_{o}}{V_{d}}=\frac{D}{1-D}=\frac{I_{d}}{I_{o}} \\
& I_{L}=I_{o}+I_{d}=\frac{I_{o}}{1-D}
\end{aligned}
$$

Continuous-discontinuous boundary

Current in L at the boundary

$$
I_{L B}=\frac{D T_{s} V_{d}}{2 L}
$$

$$
I_{L B}=I_{L B \max }(1-D)
$$

Output current at the boundary:

Discontinuous conduction

Periodic conditions:

$$
\begin{gathered}
\frac{D V_{d} T_{s}}{L}-\frac{V_{o} \Delta_{1} T_{S}}{L}=0 \\
\frac{V_{o}}{V_{d}}=\frac{D}{\Delta_{1}}=\frac{I_{d}}{I_{o}}
\end{gathered}
$$

Average current in L:

$$
I_{L} T_{S}=\frac{V_{d} D T_{S}}{L} \frac{\left(D+\Delta_{1}\right) T_{S}}{2}
$$

Therefore:

Figure 7-21 Buck-boost converter waveforms in a discontinuous-conduction mode.

$$
\begin{aligned}
& I_{L}=I_{o}\left(1+\frac{D}{\Delta_{1}}\right)=\frac{V_{d} T_{s}}{2 L} D\left(D+\Delta_{1}\right) \\
& \\
& \quad \frac{I_{o}}{I_{o B \max }}=D \Delta_{1} \frac{V_{d}}{V_{o}}=D^{2}\left(\frac{V_{d}}{V_{o}}\right)^{2} \rightarrow D=\frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{o B \max }}}
\end{aligned}
$$

Continuous-discontinuous mode

Continuous operation
$I_{o}>I_{O B}=I_{O B \max }(1-D)^{2} D_{D}$
$D=\frac{V_{O}}{V_{d}-V_{o}}$
Discontinuous operation 0.75
$I_{o}>I_{o B}$
$D=\frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{o B \max }}}$

$$
V_{0}=\text { Constant }
$$

Figure 7-22 Buck-boost converter characteristics keeping V_{o} constant.

Output voltage ripple

When the switch is ON, C is discharged through the load

$$
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{D T_{s} V_{o}}{R C} \rightarrow \frac{\Delta V_{o}}{V_{o}}=D \frac{T_{s}}{\tau}
$$

Cuk DC-DC converter

Negative DC power supply
DC analysis: $V_{C 1}=V_{d}+V_{o}$ note: $\left(V_{C 1}>V_{d}\right)$
Assumption: Large C1 (Voltage almost constant)
Switch OFF: C1 is charged through L1 and the input, Diode ON,
L2 supplies energy to R (currents in L1 and L2 decrease)
Switch ON: L1 receives energy, Diode OFF, C supplies current to R, C1 gives energy to L2 (currents in L1 and L2 increase)

Figure 7-25 Cúk converter.

Periodic conditions in L1
$V_{d} D T_{s}+(1-D) T_{s}\left(V_{d}-V_{C 1}\right)=0$
$V_{C 1}=\frac{V_{d}}{1-D}$
Periodic conditions in $\mathbf{L 2}$
$\left(V_{C 1}-V_{o}\right) D T_{s}-V_{\mathrm{o}}(1-\mathrm{D}) T_{s}=0$
$V_{C 1}=\frac{V_{o}}{D}$
Therefore

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

Pro: currents
in L1 and L2 ripple free
Con: C1 must be large

Figure 7-26 Cúk converter waveforms: (a) switch off; (b) switch on.

Full bridge DC-DC converter

Applications:

- DC motor drives
- DC to AC conversion in UPS
- DC to AC conversion in transformer isolated power supply

Fixed V_{d}.
Control polarity and amplitude of Vo

Figure 7-27 Full-bridge dc-dc converter.

Two legs: A and B. Only one switch in each leg is ON at any time

Full bridge DC-DC converter

When switch TA+ is on:

$i_{o}>0: i_{o}$ through TA+
$i_{o}<0: i_{o}$ through DA +
$V_{A N}=V_{d}$ dutycycle $\left(T A^{+}\right)$

When switch TB+ is on: $i_{o}<0: i_{o}$ through TB + $i_{o}>0: i_{o}$ through DB+ $V_{B N}=V_{d}$ dutycycle $\left(T^{+}\right)$

Figure 7-27 Full-bridge dc-dc converter.

$$
V_{o}=V_{A N}-V_{B N}
$$

Four quadrant operation on V_{o}, I_{o}

PWM with bipolar

 When $v_{\text {control }}>v_{\text {tri }}$, TA+ and TB- are $\mathbf{O N}$ Duty cycle$$
D_{1}=\frac{1}{2}+\frac{v_{\text {control }}}{\widehat{V_{\text {tri }}}} \frac{1}{2}
$$

When $v_{\text {control }}<v_{\text {tri }}$, TA- and TB+ are $\mathbf{O N}$

$$
\begin{aligned}
& \quad D_{2}=1-D_{1} \\
& V_{o}=V_{A N}-V_{B N}=D_{1} V_{d}-D_{2} V_{d} \\
& =\left(2 D_{1}-1\right) V_{d} \\
& =\frac{V_{d}}{\widehat{V_{\text {tri }}}} v_{\text {control }}
\end{aligned}
$$

PWM with unipolar

voltage switching

When $v_{\text {control }}>v_{\text {tri) }}{ }^{(a)}$ TA+ and TB- are ON
Duty cycle

$$
D_{1}=\frac{1}{2}+\frac{v_{\text {control }}}{\widehat{V_{\text {tri }}}} \frac{1}{2}
$$

When $-v_{\text {control }}<v_{\text {tri }}$,
TA- and TB+ are $\mathbf{O N}$

$$
D_{2}=1-D_{1} \quad \quad v_{0}\left(=v_{A N}-v_{B N}\right)
$$

$$
V_{o}=V_{A N}-V_{B N}
$$

$$
=D_{1} V_{d}-D_{2} V_{d}
$$

$$
=\left(2 D_{1}-1\right) V_{d}
$$

$$
=\frac{V_{d}}{\widehat{V_{t r i}}} v_{\text {control }}
$$

(d)

$$
\begin{aligned}
\text { On-state: } & \left(T_{A+}, T_{B-}\right) \\
& \left(T_{A-}, T_{B-}\right) \\
& \left(T_{A+}, T_{B+}\right) \\
&
\end{aligned}
$$

(e)

PWM signal generation

(a)

(switching frequency $f_{s}=\frac{1}{T_{s}}$)

Buck. boost

S ON
Dlede off

$$
\frac{d i_{L}}{d t}=\frac{V_{d}}{L}
$$

Cac sostiene U_{0}

S OFF Diodo ON Ca L carica C e rostiene Vo $\frac{d i_{L}}{d t}=-\frac{V_{0}}{L}$

Limite TRA conduzione contiuna e discontimua

Conduzione discontimua

$$
\begin{aligned}
\left\langle I_{L}\right\rangle & =\frac{V_{d}}{L} D T\left(D+\Delta_{1}\right) \nmid \frac{1}{2} \frac{1}{P} \\
\left\langle i_{0}\right\rangle & =\frac{\Delta_{1}}{\Delta_{1}+D}\left\langle i_{L}\right\rangle= \\
& =\frac{\Delta_{1}}{\Delta_{1}+D} \frac{V}{L} \frac{D T}{2}\left(D+\Delta_{1}\right)=\frac{V_{d}}{L} \frac{D T \Delta_{1}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{d}}{L} D T=\frac{V_{0}}{L} \Delta_{1} T \rightarrow V_{d} D=V_{0} \Delta_{1} \rightarrow \Delta_{1}=\frac{V d D}{V_{0}} \Rightarrow\left\langle i_{0}\right\rangle=\frac{V_{d}}{L} D^{2}\left(\frac{V_{d}}{V_{0}}\right) \frac{T}{2}= \\
& i_{L_{\text {max }}}=i_{0 B_{\text {max }}}=\frac{V_{0} T}{2 L} \\
& \left\langle i_{0}\right\rangle=i_{0 s_{\max }}\left(\frac{v_{d}}{v_{0}}\right)^{2} D^{2} \rightarrow D a c \sqrt{\left\langle i_{0}\right\rangle}
\end{aligned}
$$

Ripple:
Durante ton=DT la C siscarica see R

$$
\left(\begin{array}{l}
\eta \quad \Delta V=\frac{\Delta Q}{C}=\left\langle\operatorname{lo\rangle } \frac{D T}{C}=\frac{V_{0}}{R} \frac{D T}{C} \quad \Delta V \propto \frac{1}{C f_{s}}\right. \\
\text { Buck-Boost }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Bost }
\end{aligned}
$$

Cusk Converter v_{12}

Toff (Don)

Full Bridge DCDC converter (a 4 quadrant)

PwM Bipolare

Pwll Unipolare

Convertitori $D C D C$ indectorless
\rightarrow Switched Cap vs inducctor-boped
4 Ridotta area

- RIDOTTA ALTEZZA

4 Posoribalita di integretione
completa (per piccole potenie)e
fornitura di power sepply distribuita
Rappreto dl Gonversione inposto dalla topolochla
6 Efficienza di conversione ridotta se k RAPOROD DI CONERAIONE NON E FRAZIONARIO

Esempio: LADDER 3:1

Limiti de funzion omento
ЭSSL Slow switching Limit $\left[\right.$ bassa $\left.f_{s}\right]$ \rightarrow durante ciascuna fase le capacetta ragpiungolo lo stato finde di carica
\rightarrow si phò trescurare la potenze dissipota nella resibtenza dei switch
१ FSL Fast Switdrin limit [olta fs] \rightarrow la tensione sulle copacita si phó considerare costante derrante cioscuna fose.

too diudo S

$$
V_{c}(0)=V_{1}
$$

$$
i(t)=\frac{V_{2}-V_{1}}{R} e^{-\frac{t}{R C}}
$$

energha erogata da V_{2}

$$
\int_{0}^{\infty} V_{2}^{\prime}(t) d t=V_{2}\left(\frac{V_{2}-V_{1}}{R}\right) R C=V_{2}\left(V_{2}-V_{1}\right) C
$$

ENERGIA DISSIPATANEL SWITCH

$$
\int_{0}^{\infty} R i^{2}(t) d t=\int_{0}^{\infty} \frac{\left(V_{2}-V_{1}\right)^{2}}{R} e^{-\frac{2 t}{R C}} d t=\frac{\left(V_{2}-V_{1}\right)^{2}}{R} \frac{C}{2}=\frac{c}{2}\left(V_{2}-V_{1}\right)^{2}
$$

energia accurulata dacr $=\frac{1}{2} C\left(v_{2}^{2}-v_{1}^{2}\right)$

SSL
Tuesday, 16 May 2017
3 vettore moltiplicatore di carica

$$
\vec{a} \hat{\eta}_{\hat{1}}^{(1)}=\left\{a_{\text {aut }}^{(1)}, a_{c_{1}}^{(1)}, a_{c_{2}}^{(1)}, a_{c_{3}}^{(1)}, a_{\text {in }}^{(1)}\right\}
$$

fabe 1
carica due pona durante la fore
NoRAAMizzata ropetto alle carice di uscita in un prido
ES. LADDER

$$
\left.\begin{array}{l}
\vec{a}^{(1)}=\left\{\frac{1}{3}, \frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\} \\
\vec{a}^{(2)}=\left\{\frac{2}{3},-\frac{1}{3}, \frac{1}{3}, \frac{-2}{3},\right.
\end{array}\right\}
$$

Teorema di Tellegen

$$
\begin{aligned}
& \text { Rout } \\
& R_{a+1}^{s s L} I_{b u t} \leftarrow \text { Piterza dissipata } \\
& \text { internemente }
\end{aligned}
$$

FSL
R_{i} RESISTENZA SERIE del switch i
3 vettore di moltiplicitore di corvica per iswitch
ES.

$$
\begin{aligned}
& \vec{a}_{s}^{(1)}=\left\{\begin{array}{cccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & 5_{6} \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & -\frac{2}{3} & 0
\end{array}\right\} \\
& \vec{a}_{5}^{(2)}=\left\{\begin{array}{llllll}
0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & -\frac{2}{3}
\end{array}\right\}
\end{aligned}
$$

switch .(1)

$$
R_{\text {out }}^{\text {FSL }}=\sum_{i \in \text { switan }} 4 R_{i}\left[a_{s, i}\right]^{2}
$$

Nel coso intermedio traidue limiti

Aetre perdite

- Switching Loss
$P_{s w}=f_{s} \sum_{i \in S_{0, t}}\left[c_{G_{i}} v_{a_{i}-1}^{2} c_{D_{i}} v_{D_{i}}^{2}+c_{B_{i}, b_{i}^{2}}^{2}\right] \quad \propto f_{5}, A_{S}$

area complessiva occupata dal switcm

D Bottom-plate parasitic capacitance
AREA COMPLLESVA occupata dalle CAPACITA

$$
T_{\text {CAP }}=f_{5} \sum_{i \in C_{0 p}} C_{B i} V_{B i}^{2}
$$

$\propto f_{S_{1}} A_{c}$
D Resistenza seriz equivalente

$$
\text { (ESR }=\text { RESR }_{\text {out }}^{2}
$$

Wednesday, 17 May 2017 09:12

$$
P_{\text {LoSS }}=R_{\text {out }}+I_{\text {out }}^{2}+P_{\text {sw }}+P_{\text {CAP }}+P_{\text {ESR }} \quad P_{\text {out }}=V_{\text {out }}+I_{\text {out }}
$$

$$
\eta_{\text {ICENZA }}=\frac{P_{\text {out }}}{P_{\text {out }}+P_{\text {LIS }}} \rightarrow 50 . \%-90 \%
$$

Efficienza
DI CONVERSIONE

indip da Acap
Pfsl, Pest, Psu
\propto Acap \rightarrow Plap
$\propto 1 / A C A P \rightarrow$ PSSL

