Circuiti in reazione

Thursday, 27 April 2017

09:14

Circuiti elettrici in reazione

Thursday, 27 April 2017 10:14

RoF =
$$\frac{V_{LD}}{i_{L}} = \frac{A_{L}}{R_{L}} = \frac{A_{L}}$$

Impedenza di ingresso Thursday, 27 April 2017 10:05 Slay, 27 April 2017 10:05

VS + BVM = (Ri + Rob) is

VI = Ae VS

VS [1 + BAe] = VS - 1 - BAe

VS [1 + BAe] = VS - 1 - BAe

Se il fottore di reazione

RiF = (Ri + Rob) (1 - BAe) ha modulo D 1

Si può attenere

Risterna

Ristorna del sistema IN Tenzione

Rof = 1-BAe Right Rout lim Right Rout PX

Rof = 1-BAe Right Rout lim Right Rout PX

Rof = 1-BAe Right Rout

Rof = Rof < Rout

Rof < Rot < Rout

di corrente, insorzione di Tensione Prelievo Rout in K' \$ Ri € Aovi RL xu > he $x^2 \times t' \times t' \rightarrow x^2 \wedge t' \wedge t$

se
$$\beta \neq 0$$
 $iu = AeVs$

se $\beta \neq 0$ $iu = Ae(Vs + \beta iu)$
 $iu (1 - \beta Ae) = AeVs$
 $AF = \frac{iu}{Vs} = \frac{Ae}{1 - \beta Ae}$

in =
$$\frac{V_i}{R_0 + R_0 + R_0}$$

in = $\frac{A_0 V_i}{R_0 + R_1 + R_1 + R_0}$

Rest + $R_1 + R_0 + R_0$

Rest + $R_1 + R_0 + R_0 + R_0$

Inserzione di corrente, prelievo di Tensione Vu RB & W/W/NF=0

Inserzione di corrente, prelievo di corrente RL

Ae =
$$\frac{iu}{is}$$
 | $\frac{1}{is}$ | $\frac{1}{is}$

Insertane	r, 2 May 2017 Rehevo	14:25 AF (def)	Αŧ	Rif	Rof
S	P	AFE YU.	AF = Ae 1-BAe	(Ri+Rob)(1-BA)	Rost/Rip 1-BAelp_200
S	S	AF? M			(Rost + Rip) (1-BAe)
P	P	AF= VIL) reg	Rill Rob	Rost//Rip 1-BAelp_200
P	5	AF & in		(1- BAe Rsto)	(Rost+ Rip) (1- BA)

EFFETTO DELLA REAZIONE SUI POLI

AF= Ae
1-bAe
2 pli 2ERI di te sono 2ERI di AF
2 pli 2eri di (1-bHe) sono i Poli di AF

1)
$$Ae = \frac{Aeo}{1-5/sp}$$
; $\beta cost$. \Box $A = \frac{Aeo}{1-5/sp} = \frac{Aeo}{1-5/sp} = \frac{Aeo}{1-6/sp} = \frac{Aeo}{1-6/$

Amplificatore non invertente

Rost + RL/1Ri Ri+Rs+RoB

Rs=2 kn

Wednesday, 3 May 2017

$$R_{IF} = (R_{i} + R_{O}R)(1 - R_{A}R_{E})$$

$$R_{S} = 0$$

$$R_{O}F = (R_{O}I + R_{i}R_{E})(1 - R_{A}R_{E})$$

$$R_{I}R_{A}R_{B} = 0$$

$$R_{I}R_{B} = 0$$

$$R$$

Wednesday, 3 May 2017 14:30

$$R_{1}F_{=}(R_{1}^{0}+R_{0}R_{0})(1-\beta A_{0}|_{R_{1}=0})=101\cdot(1+4.8)=101\cdot10.8=1.09 M_{1}$$
 $R_{0}F_{=}(R_{0}+R_{0}R_{0})(1-\beta A_{0}|_{R_{1}=0})=101\cdot10.6=1.09 M_{1}$
 $R_{0}F_{=}(R_{0}+R_{0}R_{0})(1-\beta A_{0}|_{R_{1}=0})=101\cdot10.6=1.09 M_{1}$
 $R_{0}F_{=}(R_{0}+R_{0}R_{0})(1-\beta A_{0}|_{R_{1}=0})=101\cdot10.6=1.09 M_{1}$