Circuitu in reazione

$$
\begin{aligned}
& x_{i}=x_{s}+x_{f} \\
& x_{\mu}=A x_{i} \\
& x_{f}=\beta x_{u} \\
& \frac{x_{u}}{A}=x_{s}+\beta x_{\mu} \\
& x_{\mu}(1-\beta A)=x_{s} A \\
& A_{F}=\frac{x_{u}}{x_{s}}=\left.\frac{A}{1-\beta A}\right|_{A_{F} v-\frac{1}{\beta}} ^{s|\beta A| \gg 1}
\end{aligned}
$$

BA guadagno de evells 1- β A faltore di reazione

Cirmiti elettrici in reazione

Rete di prelievo

prelievo di TensIone

PrelieNo di tensione, ingerzione di tensione

$$
\begin{aligned}
& x_{\mu} \Rightarrow v_{u} \\
& x_{s}, x_{i}, x_{f} \Rightarrow v_{s}, v_{i}, v_{f} \\
& \text { if } \leftarrow \\
& \underset{f}{v_{f}} \beta \quad v_{u}
\end{aligned}
$$

$$
\begin{aligned}
& \beta=\left.\frac{v f}{v a}\right|_{i f=0} \quad R_{0 \beta}=\left.\frac{v f}{i f}\right|_{v_{\mu=0}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.A_{e} \equiv \frac{V_{u}}{V_{s}}\right|_{\beta=0} \\
& \operatorname{se} \beta=0 \\
& v_{u}=A_{e} v_{s} \\
& \operatorname{se} \beta \neq 0
\end{aligned}
$$

$$
v_{\mu}=A_{0} v_{i}^{\frac{R_{L}}{R_{L} R_{i} \beta}} \frac{R_{i} \beta+R_{0 J T}}{R_{L}} v_{i}=v_{s} \frac{R_{i}}{R_{i}+R_{s}+R_{0} \beta}
$$

$$
\left.\underset{=}{A_{e}=}=\left.\frac{v_{u s}}{v_{S}}\right|_{\beta_{土} 0}=A_{0} \frac{R_{L} \| R_{1}}{R_{L} \| R_{i \beta}+R_{0 J} t} \frac{R_{i}}{R_{i}+R_{S}+R_{0 \beta}} \right\rvert\,
$$

$\operatorname{lmpedenza}_{\text {day, } 27 \text { April } 2017}$ di uscita

$$
\begin{aligned}
& \begin{array}{l}
R_{\text {of }}=\frac{V_{\mu O}}{i u_{c c}}=\frac{\left.A_{F}\right|_{R_{L} \rightarrow \infty}}{\lim _{R_{L} \rightarrow 0}\left(\frac{A_{F}}{R_{L}}\right) v / 5}=\frac{\left.A_{e}\right|_{R_{L \rightarrow \infty}}}{1-\left.\beta A_{e}\right|_{R_{L} \rightarrow \infty}} \\
i_{u_{L}}=\frac{V_{L_{L}}}{R_{L}} \\
\frac{\left(A_{e} / R_{L}\right)_{R_{L} \rightarrow 0}}{1-\left.\beta A_{C e}\right|_{R_{L} \rightarrow 0}}
\end{array} \\
& \text { Nuce }=\lim _{R_{L} \rightarrow 0}\left(\frac{v_{L}}{R_{L}}\right)=\lim _{R_{L} \rightarrow 0}\left(\frac{A_{F}}{R_{L}}\right) v_{S} \\
& R_{o F}=\frac{1}{1-\left.\beta A_{e}\right|_{R_{L} \rightarrow \infty}} \cdot \frac{\lim _{R_{h \rightarrow \infty}} A_{e}}{\lim _{R_{L \rightarrow 0}}\left(\frac{A_{e}}{R_{L}}\right)}=
\end{aligned}
$$

Impedenza di ingresso

$$
\begin{aligned}
& R_{S=0} \quad v_{s}+\beta v_{\mu}=\left(R_{i}+R_{o \beta}\right) i_{s} \\
& v_{u}=\frac{A_{e}}{1-\beta A_{e}} v_{s} \\
& v_{s}\left[1+\frac{\beta A_{e}}{1-\beta A_{e}}\right]=\left(v_{s} \frac{1}{1-\beta A_{e}}=\left(R_{o \beta}\right) i_{s}\right.
\end{aligned}
$$

$R_{i F}=\left(R_{i}+R_{0 B}\right)\left(1-B A_{e}\right) \leftarrow$ se il fottore direazione ha modulo D> 1 del sistema $R_{S=0}$ si prio. ttenere $R_{i f}>R_{i}$ in reazione
$R_{\text {oF }}=\frac{1}{1-\left.\beta A_{e}\right|_{R_{L \rightarrow \infty}}} \cdot \frac{R i \beta}{\left.R_{i \beta}+R_{00}+\frac{1}{\lim _{R_{L \rightarrow 0}}\left[\frac{R L R / \beta}{\left(R / L+R_{i \beta}\right) R_{\text {out }}+R_{\chi}}\right]}\right]}$

$$
\underline{\underline{R o F}}=\frac{1}{1-\left.\beta A_{e}\right|_{R_{L} \rightarrow \infty}}\left(\operatorname{Rip} 1 \underline{R_{\text {out }}}\right) \quad \text { se }|1-\beta A e|_{R_{B \rightarrow 8}}>1
$$

Prelievo di corrente, inserzione diTensione

Ae

$$
\begin{aligned}
& \operatorname{se} \quad \beta=0 \quad i_{u}=A_{e} v_{s} \\
& \operatorname{se} \beta \neq 0 \quad u=A_{e}\left(v_{s}+\beta i_{c}\right) \\
& i_{u}\left(1-\beta A_{e}\right)=A_{e} V_{s} \\
& A_{F} \equiv \frac{i_{\mu}}{V_{S}}=\frac{A_{e}}{1-\beta A_{e}}
\end{aligned}
$$

$$
\begin{aligned}
& i_{s}=\frac{v_{s}}{\left(1-\beta A_{e}\right)\left(R_{i}+R_{0}\right)} \Rightarrow R_{1 F}=\frac{v_{s}}{15}=\left(R_{i}+R_{0} \beta\right)\left(1-\beta A_{e}^{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
R_{O F}=\left(1-\left.\beta A_{e}\right|_{R_{L}=0}\right)\left(R_{\text {out }}+R_{i \beta}\right) \text { SE }\left(1-\left.\beta A_{e}\right|_{R_{L}=0}\right) \gg 1 \\
\text { fLORA ReF } \gg R_{\text {out }}
\end{array}
\end{aligned}
$$

Inserzione di corrente, prelievo di Tensione

$$
x_{u} \rightarrow v_{u}
$$

$$
x_{i}, x_{s,}, x_{f} \rightarrow i, i, \text { if }
$$

$$
\begin{aligned}
& A_{e} \triangleq\left.\left.\frac{v_{u}}{1 s}\right|_{\beta=0} \Rightarrow \begin{array}{c}
\sec \beta_{=0} \quad v_{u}=A_{e} i s \\
\operatorname{se} \beta \neq 0 \\
v_{u}\left(1-\beta A_{e}\right)
\end{array}\right) A_{e} i s A_{e}\left(i+\beta v_{u}\right) \\
& A_{F} \frac{\Delta v_{u}}{i s}=\frac{A_{e}}{1-\beta A_{e}}
\end{aligned}
$$

β
$\left[\begin{array}{l}i_{f} \\ i_{k}\end{array}\right]=\left[\begin{array}{cc}\beta & \frac{1}{R_{0} \beta} \\ \frac{1}{R_{i \beta} \beta} & x\end{array}\right]\left[\begin{array}{l}v_{\mu} \\ v_{f}\end{array}\right]$

$$
\left.\beta \triangleq \frac{i f}{v_{u}}\right|_{v_{f}=0}
$$

$$
\left.R_{o p} \hat{\approx} \frac{v f}{i f}\right|_{v u=0}
$$

$$
R_{i} \beta \triangleq v_{e} /\left.u\right|_{v_{f}}=0
$$

Ae

$$
\begin{aligned}
& v_{i}=i_{s} R_{S} / / R_{i} / R_{0} \beta \quad v_{\mu c}=A_{0} v_{i} \frac{R_{L} / / R_{i} \beta}{R_{L} / \prime R_{i \beta}+R_{\text {out }}} \\
& A_{e}=\left.\frac{v_{\mu}}{i s}\right|_{\beta=0}=A_{0} \frac{R_{L} \mu R_{i} \beta}{R_{L} \| R_{i \beta}+R_{0}+t} \cdot \frac{1}{R_{g} 川 R_{i} 川 R_{0} \beta} \\
& \left.R_{i F}=\frac{v_{s}}{i s} \right\rvert\, \quad v_{s}=v_{i}=\left(i_{s}+\beta v_{\mu}\right)\left(R_{i} / R_{0} \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rom } \quad R_{\text {of }}=\frac{R_{\text {out }} / / / R_{i \beta}}{1-\left.\beta A\right|_{R_{L} \rightarrow \infty}}
\end{aligned}
$$

Inserzione di corrente, prelievo di corrente

$$
\begin{aligned}
& \mathrm{Ae} \\
& A e=\left.\frac{L^{\prime}}{i s}\right|_{p=0} ^{14: 00} \\
& \Rightarrow \operatorname{se} \beta=0: i_{u}=A_{e} i_{s} \\
& \text { se } \beta \neq 0: m \subset A e(i s+\beta i u) \\
& i_{n}\left(1-\beta A_{e}\right)=A e i_{s} \\
& A_{F} \triangleq \frac{j_{u}}{l_{s}}=\frac{A_{e}}{1-\beta A_{e}} \\
& \left.R_{\text {iF }} \triangleq v_{s}\right|_{R_{s} \rightarrow \infty} \quad v_{s}=(i s+\beta i u)\left(R_{i} / / R_{o \beta}\right)=\left[i s+\frac{\beta A_{e} \text { is }}{1-\beta H_{e}}\right] R_{i} / / R_{0 \beta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { prelievoditendone }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\lim _{R_{L} \rightarrow \infty}\left[\frac{R_{L} A_{e}}{1-\beta A_{e}}\right]}{\lim _{R_{L} \rightarrow 0}\left[\frac{A_{e}}{1-\beta A_{e}}\right]}=\frac{\lim _{R_{L} \rightarrow \infty}\left[R_{c} A_{e}\right]}{\lim _{R_{l \rightarrow \infty} \rightarrow 0}\left[A_{e}\right]} \cdot\left(1-\left.\beta A_{e}\right|_{R_{L}=0}\right)=
\end{aligned}
$$

Effetto della reazone sul poll
$A_{F}=\frac{A_{e}}{1-\beta A_{e}}$
3 gli ZERI di A_{e} rono ZER di A_{F}

- ghizendi ($1-\beta H_{e}$) sons i Poll di A_{F}

$$
\begin{aligned}
& \text { 1) } A_{e}=\frac{A_{e o}}{1-S / /_{p}} ; \beta \cos t . \Rightarrow A_{F}=\frac{A_{e 0}}{1-5 k_{p}-\beta A_{e 0}}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { BHIOA COTANTE }
\end{aligned}
$$

2) $A_{\text {Tuesday, } 2 \text { May } 2017}=\left[\frac{-s / s_{p}}{1-s / s_{p}}\right] A_{\text {eos }}$ $\beta \operatorname{costante}$

$$
\begin{aligned}
& A_{F}=\frac{A_{e}}{1-\beta A_{e}}=\frac{-s / s_{p} A_{e \infty}}{1-S / s_{p}+\beta s / s_{p} A_{e \infty}}=\left[\frac{-\frac{s\left(1-\beta A_{2 \infty}\right)}{S_{p}}}{\left.1-\frac{S\left(1-\beta A_{e \infty}\right)}{S}\right]\left(1-\beta A_{e \infty}\right)} A_{0 \infty 0}\right. \\
& A_{F_{\infty}}=\frac{A_{e \infty}}{1-\beta A_{0 \infty}} ; S_{L}=\frac{S_{p}}{1-\beta A_{e \infty}} \Leftrightarrow A_{F \infty}
\end{aligned}
$$

a zero nell origins 1 pols $S l=\delta_{l} / a-\beta A=00$
$1)$
diagremmar di Bode
12)
diaframma di Boole

$$
\begin{aligned}
& A_{f}=\frac{A_{e}}{1-\beta A_{e c B}}=\frac{s A_{e}}{\left(1-s / s_{p_{2}}\right)\left(s-s_{p_{1}}\right)-\beta s A_{e C B}}
\end{aligned}
$$

Amplificatore non investente

Inserzione di tensione
Rete perie β
 4
$\left[\begin{array}{l}v_{f} \\ v_{u}\end{array}\right]=\left[\begin{array}{ll}\beta & R_{0 p} \\ \frac{1}{R_{i \beta} \beta} & x\end{array}\right]\left[\begin{array}{l}v_{u} \\ l_{f}\end{array}\right]$

$$
\left.\beta \equiv \frac{v_{f}}{v_{\mu}}\right|_{i f=0}=\left.\frac{-R_{1}}{R_{1}+R_{2}} \quad R_{o \beta} \triangleq \frac{v_{f}}{f f}\right|_{v_{u}=0}=R_{1} /\left.R_{2} \quad R_{i \beta} \triangleq \frac{v_{u}}{u_{u}}\right|_{i f=0}=R_{2}+R_{1}
$$

Calcolo di Ae

$$
A_{F}=\frac{A_{e}}{1-\beta A_{e}}=\frac{v_{s}}{v_{5}}=\underset{\sec \left(\beta A_{e} \mid \gg 1\right.}{ } \quad A_{F} \sim-\frac{1}{\beta}=\frac{R_{1}+R_{2}}{R_{1}}
$$

coincide con

I'epprox di c.c.v.
se Ae ho ren polo (è il polo di Ao)
se| $\left|-\beta A_{e}\right| \nu 1$ $R_{\text {IF }} \rightarrow \infty$ $R_{\text {of }} \rightarrow 0$
ellora A_{F} ha on polo: $\omega_{M}=\omega_{p}\left(1-\beta A_{e_{0}}\right)$

$$
\omega_{1}=\frac{\omega_{p} t_{e 0}}{A_{F O}}
$$

$$
R_{i F}=\left(R_{i}+R_{-} \beta\right)\left(1-\left.\beta A_{e}\right|_{R_{S}=0}\right) \quad R_{0 F}=\left(R_{0 U t} / / R_{i \beta}\right)\left(1-\left.\beta A_{l}\right|_{R_{L} \rightarrow \infty}\right)
$$

$$
\begin{aligned}
& c_{p}=100 \mathrm{~Hz}
\end{aligned}
$$

Rete del β

$$
A_{e}=\frac{A_{v_{0}}}{R_{\text {out }}+R_{L}+R_{i \beta}} \cdot \frac{R_{i}}{R_{i}+R_{S}+R_{o \beta}}
$$

$$
\begin{aligned}
& R_{I F}=\left(R_{i}+R_{0 \beta} \beta\right)\left(1-\left.\beta A_{e}\right|_{R_{S}=0} ^{l o k_{\Omega}}\right) \quad 1 M \Omega<R_{i F}<2 M \Omega \\
& \begin{array}{l}
\left.R_{O F}=\underset{\sim}{\left(R_{\text {aut }}+R i \beta\right.}\right)\left(1-\left.\beta A_{e}\right|_{R_{L}=0}\right) \\
{\left[R_{1}, R_{2}\right]_{100 \Omega} \quad R_{0 R}>100 \mathrm{k} \Omega} \\
R_{1}+R_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=1 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}+R_{\text {out }}+R_{1}+R_{2} \cong 100 \mathrm{k} \\
& \frac{100}{103} \\
& 200 \begin{array}{ll}
1 & 1 \mathrm{k}
\end{array} R_{2}=100 \mathrm{k} \Omega \\
& \beta A_{R_{S}=0}=-R_{1} \frac{A v_{0}}{R_{L}+R_{01} t+R_{1}+R_{2}} \cdot \frac{R_{i}}{R_{i}+R_{1}}=\frac{-1000}{101.2} \cdot \frac{100}{101}=9,8 \\
& \left.\beta A_{e}\right|_{R_{L}=0} \quad-\frac{1000}{101,1} \cdot \frac{100}{103}=0,96
\end{aligned}
$$

$$
\begin{aligned}
& \text { (pk) } \\
& R_{\text {IF }}=\left(R_{i}+R_{0 \beta} \beta\right)\left(1-\left.\beta A_{e}\right|_{R_{S}=0}\right)=101 \cdot(1+9.8)=101.108=11.09 \mathrm{M} \Omega \\
& \begin{aligned}
R_{\text {OF }}=\left(R_{\text {out }}+\text { Rip }\right)\left(1-\left.\beta A_{e}\right|_{R_{L=0}}\right)=101.1(1+9.6)= & =\frac{101.1 \cdot 10.6=}{0 K} \\
& =\frac{1.07 \mathrm{M} \Omega}{0 \mathrm{~K}}
\end{aligned}
\end{aligned}
$$

