Solido cristallino
atomi disposti in un reticalo regdare

(al cmi)
METALLO : gli elettroni di volenza sons liberi di muoversi nd metallo [elettroni liberi]
(1) gli ioni [gio atomi pivi. daje: dettrani div valenza] Sons caridi pastivamate e som amoratit de positioni del raticolo cristallino [iowi fissi]

in on hetaus

$$
\frac{n=N 10^{23} \mathrm{~cm}^{-3}}{\mu=\operatorname{loon}^{2} \frac{n^{2}}{V S}\left[\frac{L^{2}}{V \cdot T}\right]}
$$

LEGGI DI OHM

$$
\begin{aligned}
& V=\varepsilon L
\end{aligned}
$$

SEMICONDUTTORI

Tuttigal ELETtRONI DI
valenal sono impeganatt in
UN LEGNHE GUMCO
ES. Silicio Si
III GPUPPO DELA TNOLA PERLDACA

4 elettroni di valenza
[impeguati nel formare
4 Legatll covalenti]
a $T=O K$ NON de cARICA HOZILE
NON a SONO ELETTRONI LIEERI
I SEMICONDUTTORI NON CONDUCONS CORRENTE
a T>OK ALCONI EUETRONI SI UBERHHO DAL LEGAHE CI SONo ELETTRONI UBER (molit mano dhe nei metalli)
I SEMICONDUTTPR COADUCONO CORRENTE
or RIHNGGNO LONL PISSI CARLCAT POSITIVAMENTE
IN UN ISOLANTE E゙ PIU DIPPCLLE CHE SI CIBBRINS GM ELETTCONI E TPICAHENI= SI APRVA PRINA RLLA CLOUBFAZIDNE CHES AlLA COIDVZZONE ELETTRCA

CORREITE DI DERINA IN UN SEMCONDUTTDEE
$I=\operatorname{qar\mu } \varepsilon$

LA POSIZTONE UBERA NE CEGME LASCIATA DALU'ELETIRONE CHE SI E LIBERATO SI SMOSTA NELAA direztone del campo eletruo INTRODUCIAMO SNA QUASI-PARTICELLA CHE CHIAMAMO LACUNA
che ma una carica positila e si neove nella DIREZIONE DEL CAMPO CON VELOCITA HEDIA

Ca Conceintrazions di eletrroni E vgnale a quolu a lamie

CONCONCRAZOME
 DI EUETTROWI

CONCELTRAZIVNE DI LACONE

CORRENTE DI DERIVA IN UN SEMCOKDUTIORE

CORRENTE DI DERIVA DEEM ELETTRONI

$$
I_{n}=q A \mu_{n^{n}} n \varepsilon
$$

 DEGU ELETTPかII
CORRENTE DI DERNA DEUS LACWNE $\frac{I}{p}=q A p p p \mathcal{L}$ MOBILITA DELE CACUNE
CORRENTE DI DERIVA TOTALE

$$
I=I_{n}+I_{p}=q A\left[\mu_{n} n+\mu_{p} p\right] \varepsilon
$$

DROGAGGLO DEI SEMICONDOTTORI (doping)

SEMICONDUTTORI INTRINSECI

$$
n=p=r_{i}^{0}
$$

CONCENTRAZONE
INTRONEECA
PI ELETMONI
e Latcune

$\left[\begin{array}{l}\text { introdusioni di } \\ \text { eltri elemonti }\end{array}\right.$
(MPUREZZE)
nel semiconduttere

$$
n_{i}=C T^{3 / 2} \exp \left(\frac{-\epsilon_{g}}{k T}\right)
$$

ne SILICIO [III GRUPPO] (Germanio Ge)

$$
n \ll p
$$

$$
n_{i}=C T^{3 / 2} \exp \left(\frac{-\sigma_{g}}{k T}\right)
$$

nel SILICIO [III GRUPPD] (Germanio - DRogacieio con atomi pentaulalenti [del

- drogatgetio con homi trivilenti [del Ill
coñcurrezane
NTRNBECA
Pleuenail

DROGAGGGO
\rightarrow DIFPUSIONE

IMPUREZZE SOSTTUZIONAC (CiDE OCUUPANO UNA POSIZZONE DQ

DRogagGio con atomi pentavalel

N_{D} concentrabione di donatari $\left[\mathrm{cm}^{-3}\right] \quad 2$

DROGAGGMO CON ATOM TRUVLENT [ACCETTORI] (acceptors)

ciatoho trivaleme acceita un EETTRONE DA UN ATOKODI sllicio AdAcente

1) Si genera una lacuna
2) NON 81 GENERA UN ELTTRONE UBERD
3) Rirane uno lone pisso con carica

$$
p=N_{\lambda_{A}+n}^{\text {CONCEN }}
$$

a accetton

$$
\text { se } N_{A}=10^{17} \mathrm{~cm}^{-3} \rightarrow \quad p r N_{A}=10^{17} \mathrm{an}^{-3}
$$

ANCORE: $p h=n_{i}^{2}$

$$
n \sim \frac{n_{i}^{2}}{N}=10^{3} a n^{-3}
$$

P CONCONTREZOONS DI POTKTDPI MAGGTORTTH n colceanraziove di porthionl manorithra

CORRENTE DI DIFPUSLONE
si ha anche quando $\varepsilon=0$
si deve avere euna concentrazione di portatori NON OnOCiENEA

$$
I={\underset{n}{n}}^{D^{\text {Costante }} \text { A }}
$$

costantr dl diffusione DEGU ELETTRONI
per le cacune

$$
\begin{aligned}
& I=-D_{p} q A \frac{d \rho}{d x} \\
& C_{\text {COSTANE DI DIFUUIONE }} \\
& \text { DEUE LACUNE }
\end{aligned}
$$

RELAZIONE DI EINSTEIN

$$
D_{n}=\left(\frac{k T}{q}\right) \mu_{n} \quad D_{p}=\left(\frac{k T}{q}\right) \mu_{p}
$$

K costante di Boltzmann $\left[1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}\right]$
T Tempratura (K)
9 carive elementare $\left[1,6 \cdot 0^{-19} \mathrm{C}\right]$
$\frac{k T}{9}$ é una tensione $\quad \rightarrow \frac{T}{T}=\frac{300 k}{9}=\frac{26 \mathrm{mV}}{}$

MODEUS DI DERIVAEDIPRUSIONE (DRIFT-DIFFUSION MODEL)

Corrente di elettroni

$$
I_{n}=\underbrace{A}_{\substack{\text { CORRNNE } \\
\text { D DERVA }}} \mu_{n} n \varepsilon \quad+\underbrace{q A D_{n} \frac{d n}{d x}}_{\begin{array}{c}
\text { CORRENRED } \\
\text { DIFUUSIONE }
\end{array}}
$$

CORREME DI LACUNE

$$
I_{p}=\underbrace{A q \mu_{p} p \varepsilon}_{\substack{\text { CORENNE } \\ \text { DI DERIVA }}}-\underbrace{q A D_{p} \frac{d p}{d x}}_{\substack{\text { CORRENTE } \\ \text { DI DIFRUSIONE }}}
$$

corrante tothee

$$
I=I_{n}+I_{p}
$$

DIODO A GUUNZLONE P-N
Al'equilibrio termico

DIPFOSIONE A ELETIRONL E LACNNE attraverdo la glunzione i portatori majpientari atraversano la giunzione, e ricombinano.

E si oppone ALLA DIPFUSIONE

Energat potenzille per le lacune

$u_{p}=q \phi$
enerexa potenaale per "Gul Euttroni
$v_{n}=-q \phi$

Fuori

ϕ
quando $V<0$ dè la corteule di deriva

CARATTERISTLCA CORRENTE-TENSIONE

$$
I=I_{S}\left[e^{\frac{V}{\eta_{\tau}}}-1\right]
$$

I_{S} CORRENTE DI SATURAZONE NVERSA
$V_{T}=\frac{K T}{9}$ TENSIONE TEPHCA

$$
\left[\begin{array}{c}
T=300 k \\
v_{T}=26 \mathrm{mV}
\end{array}\right]
$$

$\eta=1 \div 2$ FATtoRE IDEKLITA DEL DLODO

Raddrizzatore a singola semionda

2) RELnZiove Tht Ve 5 determinata dolle caratteristica del diodo

RELAZINE INTERNA

$$
I=I_{s}\left[e_{<p}\left(\frac{v}{\eta v_{k}}\right)-1\right]
$$

D Ea. DEUA MAGLIA

$$
\begin{aligned}
& V_{S}=V+R I \\
& V_{S}=V_{0} \sin \omega t \\
& \text { se } V_{S}=0 \rightarrow I=0 \rightarrow V_{u}=0 \\
& \text { se } V_{S}<0 \rightarrow I=-I_{S} N 0 \rightarrow V_{u}=0 \\
& \text { se } V_{S}>0 \rightarrow 0<V_{0}<V_{0} \rightarrow V_{u}=V_{S}-V_{>0}>0
\end{aligned}
$$

Modello per i grandi seguali

Come si procede

1. Hp in quale tratts siamo?
2. Si risolveil ciruito con I'potes. fatta
3. Ss verfice 1 potes

sit ${ }^{t}$ No \rightarrow si cambia ipoten esitorka a (7)

$$
\left.\begin{array}{rl}
V_{s} & =3 \mathrm{~V} \\
R & =1 \mathrm{~K} \Omega \\
V_{\sigma} & =0.6 \mathrm{~V} \quad R_{d}=50 \Omega \\
? I_{J} V
\end{array}\right\} \begin{aligned}
& \text { DAT DEL MODEL }
\end{aligned}
$$

1. Hp $V<V_{\gamma} \longrightarrow$ modello di grande seguale : $\pm=0$

$$
I=0 \quad V=V_{S}=3 V
$$

Verifichiamo $V<V_{\gamma} \quad 3<0.6 \quad N O$
2. $H_{p} V>V_{\gamma} \Longrightarrow$ modello di grande segnale: $I=\frac{V-V_{\gamma}}{R d}$

$$
\begin{align*}
& I=\frac{V_{S}-V_{\gamma}}{R_{d}+R}=\frac{3-0.6}{1050}=2.3 \mathrm{~mA} \\
& V=V_{\gamma}+R_{d} I=0.6+50 \cdot 2.3 \cdot 10^{-3}=0.6115 \mathrm{~V} \tag{ok}
\end{align*}
$$

venfichiams

$$
v>v_{\gamma}
$$

Modello di piccolo segnale
[espansione di Taylor al i ordine delle caratteristiche]

$V_{\delta}+v_{S}=V+R I \in$ Retta di carico $\tau_{V_{S}}=V_{0} \sin (\omega t)$

$I(v)$
espansione al primo ordine intorno a $Q\left[V_{Q} I_{Q}\right]$

$$
\begin{aligned}
& g=\left.\frac{\partial}{\partial V}\left[I_{S}\left(\exp \left[\frac{V}{\eta V_{T}}\right]-1\right)\right]\right|_{V=V_{Q}} ^{1}=\frac{I_{S}}{\eta V_{T}} \exp \left(\frac{V_{Q}}{\eta V_{T}}\right)=\frac{I_{Q}}{\eta V_{T}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\begin{array}{l}
V_{S}=3 \mathrm{~V} \quad V_{j}=0.6 \mathrm{~V} \\
R=1 \mathrm{k} \Omega \quad
\end{array} R_{d}=50 \Omega \quad I_{Q}=2.3 \mathrm{~mA} \\
V_{S}=V_{0} \sin (\omega t) \quad V_{0}=0.715 \mathrm{~V}
\end{array}\right\} \stackrel{S E}{V_{S}=0}
$$

Eq. alla maglia

$$
\begin{gathered}
V_{s}+v_{s}=V+R I \\
V / S+v_{s}=[V / Q+v]+R[I / Q+i]
\end{gathered}
$$

SAPPIAMO CHE $V_{S}=V_{Q}+R I_{Q}$
cruits aq
QUINDI
equetine della
$\sigma_{s}=\sigma_{+} R_{i}$ maglio parle Coriazion:

$$
i=8 v
$$

pule variaziomi

$$
\begin{aligned}
& g=\frac{I_{Q}}{2 V_{T}}=\frac{2.3 \cdot \frac{-3}{1 \cdot 26 \cdot 10^{-3}}=0.09 \Omega^{-1} \quad \frac{1}{8}=11 \Omega}{\psi^{4}} \begin{array}{l}
2=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& i=\frac{V_{s}}{R+1 / g}=\frac{0.1 \sin (\omega t)}{1011}=0.1 \mathrm{~mA} \cdot \sin \omega t \\
& v=\frac{\dot{j}}{g}=0.1 \cdot 11=1.1 \mathrm{mV}(\sin \omega t) \\
& \quad I=I_{Q}+i=2.3+0.1 \cdot \sin (\omega t) \quad \mathrm{mA} \\
& V=V_{Q}+i=715+1.1 \cdot \sin (\omega t) \quad \mathrm{mV}
\end{aligned}
$$

Notazione
$I_{D} V_{D}$ componente costante [soltanto gen. costanti] $i_{d}(t) \sigma_{d}(t)$ componente variabile (piccola)
$i_{D}(t) j_{D}(t)$ grandezza ToTale

$$
i_{D}(t)=I_{D}+i_{d}(t) \quad v_{D}(t)=V_{D}+v_{d}(t)
$$

Id V_{d} ampiezza della componente variabile

$$
i_{d}(t)=I_{d} \sin (\omega t) \quad v_{d}(t)=V_{d} \sin (\omega t)
$$

$\dot{I}_{d} \dot{V}_{d}$ fersori della componente variabile

CARICHE IMMAGAZZINATE NEL DIODO 3:58 PM
o diodo in polarizzazione inversa (inTerdetto)

$C_{T}=\frac{\partial Q}{\partial V}$ CIPACITA DIPPEREN
(cAPAcitã di TRANSIzione)
modello di piceols
seguale

$$
i=g v+c_{T} \frac{d v}{d t}
$$

diodo in polarizzzazione diretta

Carica fissa

Carica dousta
alla diffusione $\left.\begin{array}{c}\text { proporzionsle } \\ \text { sele } \\ \text { corrente }\end{array}\right)$
$\begin{aligned} d V\end{aligned} \rightarrow d Q_{p}=C_{T} d V$ nelle zona corrente
CRCUITO Equidutente
 $d Q_{D}=C_{D} d V$ carica diffusa

$$
\begin{aligned}
& d Q_{=}=d Q_{T}+d Q_{D}=\left(C_{T}+C_{D}\right) d V \\
& i_{=} \frac{d Q}{d t}-\left(C_{T}+C_{D}\right) \frac{d V}{d t}
\end{aligned}
$$

COMMUTAZAONE DEL DIODO

Vs

MECCANISMO FISICO DEL BREAKDOWN

EFFETTO ZENER

$$
T C \text { di } H_{B D}<0
$$

RIFERIMENTO II TENSlone

1. Hp diodo in zona zoner

$$
\begin{aligned}
& V_{B D}=5 \mathrm{~V} \quad\left[R_{z}=1 \Omega\right] \\
& R_{L}=500 \Omega \\
& R_{\delta}=50 \Omega \\
& V_{A}=6: 8 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& V_{u}=V_{A} \cdot \frac{R_{z} / R_{L}}{R_{Z} / / R_{L}+R_{S}}+V_{B D}\left[\frac{R_{S} / / R_{L}}{R_{S} K R_{L}+R_{Z}}\right] \cong V_{B D} \\
& V_{U}=V_{A} \cdot \frac{1}{50}+\underbrace{V_{B D}<R_{L}, R_{S}}
\end{aligned}
$$

$$
V=-V_{\mu} \simeq-V_{B D}
$$

$$
\rightarrow \frac{V+V_{B D}<0}{} \Rightarrow V_{B D}-V_{M}<0<*_{B D} \frac{R_{z}}{R_{S} / / R_{L}+R_{z}}-V_{A} \frac{R_{z} / R_{L}}{R_{2} / R_{L}+R_{S}}<0
$$

$$
\begin{aligned}
& V_{B D} \frac{R_{2}}{R_{S} \| R_{L}+R_{z}}-V_{A} \frac{R_{2} / / R_{L}}{R_{2} / / R_{L}+R_{S}}<0 \\
& V_{B D} \frac{R_{z}}{\frac{R_{S} R_{L}}{R_{S}+R_{L}}+R_{z}}-V_{A} \frac{\frac{R_{z} R_{L}}{R_{z}+R_{L}}}{\frac{R_{z} R_{L}}{R_{z}+R_{L}}+R_{S}}<0 \Rightarrow V_{B D} \frac{R_{z}\left(R_{S}+R_{L}\right)}{R_{S S}+R_{S} R_{z}+R_{S} R_{L}}+
\end{aligned}
$$

$$
\begin{aligned}
& V_{B D}\left[R_{S}+R_{L}\right]-V_{A} R_{L}<0 \\
& V_{A}>V_{B D} \frac{R_{S}+R_{L}}{R_{L}}=V_{B D}\left[1 e \frac{R_{S}}{R_{L}}\right]=5\left[1+\frac{50}{500}\right]=\frac{5.5}{\frac{1}{1}} \mathrm{~V}
\end{aligned}
$$

TRANSISTORI
dispositivi a the Terminali
Transfer - Resistor

Amplificatore

g_{m} Transconduttanza
\longrightarrow generatare conTion Nato da tensione

$i_{i}=\Delta_{i} i_{i} \leftarrow$ generatare di correntes contrototo da corrente
\rightarrow AMPUPICAzRONE DI CORCEOTTE
(quedorgno th cortente)

Funziamento

$$
\begin{aligned}
& V_{B E}>0 \\
& V_{B C}<0
\end{aligned}
$$

Energia potenziale per gli eletroni

FLUSSI PRINCIPAL DI CARICA

MODEUS DI ERERS-MOL

$n p n$

$$
\begin{gathered}
n p n \\
I_{E D}=I_{E S}\left[e^{\frac{V_{B E}}{V_{T}}}-1\right] \\
0<a_{F}<1 \quad I_{C D}=I_{C S}\left[e^{\frac{V_{B C}}{V_{T}}}-1\right] \\
{[\eta=1]}
\end{gathered}
$$

Hodello a 4 paralleten

$$
\alpha_{F J}, \alpha_{R}, I_{E S}, I_{C S}
$$

bI cul 3 SONO INDIPENDENT

CONDIZIONE DI RECIPROCITA

Se $V_{B E}$ e $V_{B C} \quad\left[V_{C E}=0\right]$
\int gli elettromi in bese devo $\left\{\begin{array}{l}\text { diflondse mell' 'emellitase end } \\ \text { colletore nello stexrondo }\end{array}\right.$

$$
\begin{aligned}
& e \text { nello stersol } \\
& \left(Q_{R} I_{C D}=I_{E D}\right. \\
& V_{B E}
\end{aligned}
$$

energia potenziale

$$
\begin{gathered}
\gamma_{R} I_{C D}=Q_{F} L_{E D} \\
\alpha_{R} I_{C S}\left(e^{\left.\frac{V_{B C}}{V_{T}}-3\right)}=\sigma_{F} I_{E S}\left(e^{\left.\frac{V_{Q}}{I_{-1}}\right)}\right.\right. \\
\alpha_{R} I_{C S}=a_{F} I_{E S}
\end{gathered}
$$

CONDIEIONE DI RECIPROCITȦ

se $V_{C E}=0$ il transistore si deve comportare come due diodi in parallelp
se $V_{C E}=0$

$$
\alpha_{R} I_{C D}+\alpha_{F} I_{E D}=0
$$

Poniamo $\quad V_{B C}=0$

$$
I_{C D}=0
$$

$$
\begin{aligned}
& I_{E}=-I_{E D}+\alpha_{B} D_{C D} \\
& I_{C}=-I_{C D}+\alpha_{F} I_{E D}
\end{aligned}
$$

$$
I_{C}=-\alpha_{F} I_{E}
$$

guadagno di colrente
DIRETTO $\underbrace{\text { DI CORTO CIRCUITO }}_{V_{B C}=0}$
Forward short ciecit

Forward

$$
\alpha_{F} \div 0.995 \div 0.9
$$ wrrent gain

Poniamo $V_{B E}=0$

$$
\begin{aligned}
& I_{E D}=0 \\
& \left\{\begin{array}{l}
I_{E}=\alpha_{R} I_{C D} \\
I_{C}=-I_{C D}
\end{array} \Rightarrow \alpha_{R}=\left|\frac{I_{E}}{I_{C}}\right|_{V_{B E=0}}\right.
\end{aligned}
$$

GUADAGNO DI CORLENTE INVERSO

DI Copto cieculto
$V_{B E}=0$
\uparrow
Giungrone Polacilzata PIRETTAM ENTE '̀ $B C$

$$
o_{p} \div 0,9-0,1
$$

$$
\begin{array}{r}
\quad-\left.\left.\underbrace{n}_{B}\right|^{p}\right|^{n}- \\
\\
\\
\\
\\
\\
\\
\\
a_{R}
\end{array}
$$

Zona attiva diretta (Gpn) dIB

Zona atliva inversa

$$
\begin{aligned}
& V_{B E}<0 \\
& V_{B C}>0 \\
& I_{E D}=-I_{E S} \\
& I_{E} \xrightarrow[\alpha_{R} I_{C D}]{I_{E D}} \\
& I_{E}=+I_{E S}+\alpha_{R} I_{C D} \\
& \Rightarrow I_{E}=I_{E S}+\alpha_{R}\left[-I_{C}-\alpha_{F} I_{E S}\right] \\
& I_{C}=-\alpha_{F} I_{E S}-I_{C D} \\
& I_{E}=-\alpha_{R} I_{C}+I_{E S}\left(1-\alpha_{R} \alpha_{F}\right) \\
& \underbrace{}_{\text {IeO }-\left[\begin{array}{ll}
-I_{2} \\
\text { Ies se } \\
C=0
\end{array}\right]} \\
& I_{E}=+\alpha_{R} I_{B}+\alpha_{R} I_{E}+I_{E O}
\end{aligned}
$$

Regioni di funzionamento del BJT

CARATTERISTICHE DI USCITA DEL BTT a EHETMTORE COHUNE

$$
\begin{aligned}
I_{C} & =\beta_{F=} I_{B}+\left(\beta_{F+1}\right) I_{C D} \\
V_{C E} & =-V_{B C}+V_{B E}
\end{aligned}>0
$$

β_{F} oumenta (leyermenta') all'aomentare di VCe
$I_{C}\left(V_{C E}\right)$ con I_{B} come porametro

EFFETTO EARLY

$$
\begin{aligned}
& \text { ENERGIA POTENZALE } \\
& \text { PER GU ELETTPONI }
\end{aligned}
$$

$$
\begin{aligned}
& I_{C}=\beta_{F}^{F} I_{B} \sim \cdots \\
& \frac{\partial I_{C}}{\partial V_{C E}}=\frac{\partial \beta_{F}}{\partial V_{C E}} I_{B} \Rightarrow \frac{1}{I_{C}} \frac{\partial I_{C}}{\partial V_{C E}}=\frac{1}{\beta_{F}} \frac{\partial \beta_{F}}{\partial V_{C E}}=\frac{1}{V_{A}}
\end{aligned}
$$

se aumenta vae anmenta la zona DI SVUOTAMENTO tra B E C GLI ELETTRON: SONO ACCELERAT PRIM4 velso il colletroce $+$ aumenta la corrinte DI covetrore RSPETTO A querca di उASE $+$ adnenta β_{F}

pendenza deue CARATERISTCHE

$$
\begin{aligned}
& \frac{\partial I_{C}}{\partial V_{C E}}=\frac{I_{C}}{V_{C B} V_{A}} v \frac{I_{C}}{V_{A}} \\
& \frac{1}{I_{C} \frac{\partial I_{C}}{\partial V_{C E}}=\frac{1}{V_{A}}}
\end{aligned}
$$

Modello di Grande Segnale del BJt

1. Zona Attiva Diretta

Condizionl

$$
\begin{aligned}
& \rightarrow I_{B>0} \\
& \rightarrow V_{C E}=-V_{B C}+V_{B E}>V_{C E S A T}<\begin{array}{c}
0.2 \div 0.3 \mathrm{~V} \\
\text { Connoizoni }
\end{array}
\end{aligned}
$$

$\mathrm{I}_{\mathrm{g}}>0$
Con^{2}
2. Saturazione (diretta)

3. Zona Attiva INVERSA
$V_{B C}>0$
$v_{B E}<0$

$$
\begin{aligned}
& \quad I_{E=} \beta_{R} I_{B} \\
& \operatorname{CoNDIZONT} \\
& \rho I_{B}>0 \\
& \partial V_{E C}=-V_{B E}+V_{B C}>\frac{V_{E C_{S a t}}}{\square} \\
& 0.2 \div 0.3 \mathrm{~V}
\end{aligned}
$$

4. Zona di Sat INVERSA

$$
V_{B C}>0
$$

VBED
$V_{B C}>V_{B E} \rightarrow V_{E C}>0$
5. Interdizione $V_{B C}<0$
$V_{B E}<0$

Sonalizone

$$
I_{3} 20
$$

$t \in>0$

$$
I_{E}<\mu_{e} I_{s}
$$

\qquad
$V_{\text {Oce }}$
$r_{B E}<0$

$R_{B}=300 \mathrm{k} \Omega$
Hp. ZONA ATRVA DIRETTA

$$
\begin{aligned}
R_{C C} & =2 \mathrm{k} \Omega \\
V_{C C} & =10 \mathrm{~V} \\
\beta_{F} & =100 \\
\cdot V_{B C N} & =0.7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B E O N}}{R_{B}}=\frac{10-0.7}{300 \cdot 0^{+3}}=31.0^{6}=31 \mu \mathrm{~A} \\
& I_{C}=\beta_{P} I_{B}=100.31 \mu A=3.1 \mathrm{~mA}
\end{aligned}
$$

VERNFLCD LE PBTESI $I_{8}>0$ OK

$$
\begin{aligned}
V_{C E}>V_{C E S A T} \rightarrow V_{C E} & =V_{C C}-R_{C} I_{C} \\
& =10-2.3 .1=3.8 \mathrm{~V}>V_{C E S A T}
\end{aligned}
$$

Stesso con $R_{c}=4 \mathrm{k} \Omega$
NCLA VERIFICA VCESVCESOT $\quad V_{C E}=V_{C C}-R_{C} I_{C}=10-4 \cdot 3.1=-2.4 V$
AGTRA POTESI ZONA DI SATURAZUONE (DIRETTA)

$$
\begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B G A N}}{R_{B}}=31 \mu A \\
& I_{C}=\frac{V_{C C}-V_{C \operatorname{tas} A}}{R_{C}}=\frac{9.8}{4}=\frac{2.45 \mathrm{~mA}}{\eta}
\end{aligned}
$$

VERIPICHIATO

$$
\begin{aligned}
& I_{B}>0 \quad I_{C}>0 \\
& I_{C}=\beta_{F} I_{B}=3.1 \mathrm{~mA} \text { of }
\end{aligned}
$$

CIRCUITO EQUIVALENTE DI PICCOLO SEGNALE configurazione a emettitore comune

$$
i_{c}\left(V_{C E}, i_{B}\right)
$$

CARATTERISTICHEDI $V_{B E}\left(i_{B}, V_{C E}\right)$ CARATTREISTCHE DI
LINearizeazione al i ocane

$$
\begin{aligned}
& i_{c}=h_{f_{e}} i b+h_{0 c} v_{c e}
\end{aligned}
$$

DAL HODULS DI EBEES ETOLL IN ZONA ATTVA DICETTA

$$
\begin{aligned}
& I_{C}=\beta_{P} I_{B}+\left(\beta_{F+1}\right) \text { Io }_{0} \\
& i_{C}=\beta_{\hat{C}} i_{B}+\underbrace{\left(\beta_{F}+1\right) I_{C_{0}}}_{\text {cost }} \\
& h_{f}=\left.\frac{\partial l_{C}}{\partial l_{B}}\right|_{Q}=\left.\beta_{F}\right|_{Q} \\
& \text { hoe }=\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{Q}=\left.\frac{\partial \beta_{F}}{\partial v_{C E}}\left(i_{B}+I_{C_{0}}\right)\right|_{Q}= \\
& \left.h_{e} \simeq \frac{\Delta I_{C}}{\Delta I_{B}}\right|_{V_{C E}}=\frac{I_{C}\left(I_{B_{2}}\right)-I_{c}\left(I_{21}\right)}{I_{2_{2}}-I_{21}}
\end{aligned}
$$

CIRCUITO DI GIACOLETTO circuito a paramethi ibridi

Traschratho
hre

rboporte dell' hic

MAxiwWM Ratinces (Velori massimi)

Transistore a EPPETTO DI CAMPO [Field Effect Transistor] FET

MOSFET
Hetal Oxide Semicouductor FET

DEFINIAMO UNA TENSIONE DI

SOGMA $V_{T_{R} \text { THRESHOLD }}$
$V_{G S}<V_{T}$ ie canale Δ_{i} eletroni NON SI E FORMATO $\left[\begin{array}{c}\text { HOSFET e in } \\ \text { WNERDZZONE }\end{array}\right]$
$V_{E \delta>} V_{T}$ ie chal di dettroni si è formato [rosFer in CONDCZIONE]

REGHONI DI FUUZSO NAAHENTO DI UN N-MOSPET

ว) INTERDZZONE (CUTOFF)

$$
\beta=\frac{1}{2} \underbrace{\frac{\varepsilon_{0} \varepsilon_{0 x}}{t_{0 x}}}_{\text {Cox }} \frac{w}{L} \stackrel{\downarrow}{n}^{b}
$$ CPRPatí DEU bSSSido par untía di suprrtilue $\left[\mathrm{F} / \mathrm{m}^{2}\right]$

$$
\beta=\frac{1}{2} \operatorname{Cox} \frac{w}{L} \mu_{n}
$$

$$
C_{\mu_{E}}=\operatorname{Cox}_{\substack{\text { Cenatol } \\ \text { GATE }}}^{\omega L}[F]
$$

$$
C_{G}
$$

Caratteristica di trasferimento [TRANSCARATRERISTICA] $I_{D}\left(V_{G S}\right)$ per $V_{D S}$ costante (in Saturazione)

JFET [FET a giunsione] \uparrow
Junction

Se Vgs = Vpre il canaué è tothhievte sulorno PINCH OFF $\left(V_{p}<0\right)$

$$
\begin{array}{ll}
V_{G S}=V_{G D}+V_{D S} & =\begin{array}{l}
V_{G S}>0 \\
\\
\\
\\
\\
\\
\\
\left|V_{G S}\right|<\left|V_{G D}\right|
\end{array}
\end{array}
$$

se $V_{G D}=V_{p}$ abbiamo il PINCH OFF $V_{G S}-V_{D S}=V_{P} \Rightarrow V_{D S}=V_{G S}-V_{p}$

SATURAZIONE

REELONI DI FONZLONAHENTO DEL JPET (NJTET) I_{D}

- INTERDIZONE (CUT OFF)

$$
V_{G S}<V_{P} \Rightarrow I_{D}=0
$$

3 Regione uneare

$$
V_{P}<V_{G S}<0 \quad V_{D S}<V_{G S}-V_{P}
$$

$$
\begin{aligned}
& \text { 1) REGLONE DI SATURAZONE } \\
& V_{p}<V_{G S}<0
\end{aligned}
$$

Modello di piccolo segrale del FET (configuratione S comune)

Capacita interne dei PET

\leftarrow Condensatore a focce piene e parallele

$$
C_{G}=C_{0 \times} W L=C_{g} s+C_{g} d
$$

$$
c_{g s} \simeq G_{d} \simeq \frac{c_{G}}{2}
$$

in saturazione

$$
\mathrm{Cgs}>\mathrm{Cgd}
$$

Capocitóa della zova di sviotamento p.n tha gate e canale $C_{G}=C_{g} d+C_{d} d$

CRCOTTO EQUIVALENTE DI PICCOLO SEGNALE DEL FET (Valids anche in alta frequenza)

MOSFET (a canale n)

$$
\begin{aligned}
& I_{D}=\beta\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& g_{m}=\left.\frac{\partial \dot{I}_{D}}{\partial V_{G S}}\right|_{Q}=\frac{2 I_{D}}{\left(V_{G S}-V_{T}\right)} \\
& g_{0}=\left.\frac{\partial \dot{I}_{D}}{\partial V_{D S}}\right|_{Q}=\frac{\lambda}{\left(1+\lambda V_{D S}\right)_{D}} I_{D} \sim \lambda I_{D}
\end{aligned}
$$

JFET

$$
\begin{aligned}
& I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{D}}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& g_{m}=\frac{\partial I_{D}}{\partial V_{G S}}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S}}{V_{p}}\right)\left(1+\lambda V_{D S}\right) \\
& g_{M}=\frac{-2}{V_{p}\left(1-\frac{I_{D}}{V_{D P}}\right)}=\frac{2 I_{D}}{\left(V_{G S}-V_{p}\right)} \\
& g_{0}=\left.\frac{\partial i_{D}}{\partial V_{G S}}\right|_{Q}=\frac{\lambda}{\left(1+\lambda V_{D S}\right)} I_{D} \sim \lambda I_{D}
\end{aligned}
$$

DREGIONE DI SATURAZZONE

SIMBOLI DEL MOSFET

